{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T04:35:10Z","timestamp":1728448510410},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030326913"},{"type":"electronic","value":"9783030326920"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32692-0_24","type":"book-chapter","created":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T12:04:21Z","timestamp":1570622661000},"page":"203-211","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Morphological Simplification of Brain MR Images by Deep Learning for Facilitating Deformable Registration"],"prefix":"10.1007","author":[{"given":"Dongming","family":"Wei","sequence":"first","affiliation":[]},{"given":"Sahar","family":"Ahmad","sequence":"additional","affiliation":[]},{"given":"Zhengwang","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Xiaohuan","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Xuhua","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Dinggang","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Qian","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,10]]},"reference":[{"issue":"1","key":"24_CR1","doi-asserted-by":"publisher","first-page":"S61","DOI":"10.1016\/j.neuroimage.2008.10.040","volume":"45","author":"T Vercauteren","year":"2009","unstructured":"Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61\u2013S72 (2009)","journal-title":"NeuroImage"},{"issue":"2","key":"24_CR2","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1023\/B:VISI.0000043755.93987.aa","volume":"61","author":"MF Beg","year":"2005","unstructured":"Beg, M.F., et al.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139\u2013157 (2005)","journal-title":"Int. J. Comput. Vis."},{"issue":"3","key":"24_CR3","doi-asserted-by":"publisher","first-page":"2033","DOI":"10.1016\/j.neuroimage.2010.09.025","volume":"54","author":"BB Avants","year":"2011","unstructured":"Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033\u20132044 (2011)","journal-title":"Neuroimage"},{"issue":"5","key":"24_CR4","doi-asserted-by":"publisher","first-page":"633","DOI":"10.1016\/j.media.2010.06.001","volume":"14","author":"J Hamm","year":"2010","unstructured":"Hamm, J., Ye, D.H., Verma, R., Davatzikos, C.: GRAM: a framework for geodesic registration on anatomical manifolds. Med. Image Anal. 14(5), 633\u2013642 (2010)","journal-title":"Med. Image Anal."},{"issue":"1","key":"24_CR5","doi-asserted-by":"publisher","first-page":"61","DOI":"10.1016\/j.media.2014.10.007","volume":"20","author":"Q Wang","year":"2015","unstructured":"Wang, Q., et al.: Predict brain MR image registration via sparse learning of appearance and transformation. Med. Image Anal. 20(1), 61\u201375 (2015)","journal-title":"Med. Image Anal."},{"issue":"11","key":"24_CR6","doi-asserted-by":"publisher","first-page":"1421","DOI":"10.1109\/TMI.2002.803111","volume":"21","author":"D Shen","year":"2002","unstructured":"Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421\u20131439 (2002)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"24_CR7","doi-asserted-by":"publisher","first-page":"1657","DOI":"10.1109\/TMI.2007.901432","volume":"26","author":"AA Joshi","year":"2007","unstructured":"Joshi, A.A., et al.: Surface-constrained volumetric brain registration using harmonic mappings. IEEE Trans. Med. Imaging 26, 1657\u20131668 (2007)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"24_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1007\/978-3-319-43775-0_38","volume-title":"Medical Imaging and Augmented Reality","author":"J Zhang","year":"2016","unstructured":"Zhang, J., Wang, Q., Wu, G., Shen, D.: Cross-manifold guidance in deformable registration of brain MR images. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 415\u2013424. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-43775-0_38"},{"key":"24_CR9","doi-asserted-by":"crossref","unstructured":"Haskins, G., Uwe, K., Yan, P.: Deep learning in medical image registration: a survey. arXiv:1903.02026 (2019)","DOI":"10.1007\/s00138-020-01060-x"},{"key":"24_CR10","doi-asserted-by":"crossref","unstructured":"Balakrishnan, G., et al.: An unsupervised learning model for deformable medical image registration. In: CVPR, pp. 9252\u20139260 (2018)","DOI":"10.1109\/CVPR.2018.00964"},{"key":"24_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"24_CR12","unstructured":"Taubin, G.: Curve and surface smoothing without shrinkage. In: ICCV, pp. 852\u2013857 (1995)"},{"issue":"9","key":"24_CR13","doi-asserted-by":"publisher","first-page":"1900","DOI":"10.1109\/TBME.2018.2822826","volume":"65","author":"X Cao","year":"2018","unstructured":"Cao, X., et al.: Deformable image registration using a cue-aware deep regression network. IEEE Trans. Biomed. Eng. 65(9), 1900\u20131911 (2018)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"24_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1007\/11784012_16","volume-title":"Biomedical Image Registration","author":"GE Christensen","year":"2006","unstructured":"Christensen, G.E., et al.: Introduction to the non-rigid image registration evaluation project (NIREP). In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 128\u2013135. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11784012_16"},{"issue":"3","key":"24_CR15","doi-asserted-by":"publisher","first-page":"1064","DOI":"10.1016\/j.neuroimage.2007.09.031","volume":"39","author":"DW Shattuck","year":"2008","unstructured":"Shattuck, D.W., et al.: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064\u20131080 (2008)","journal-title":"Neuroimage"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32692-0_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T00:03:14Z","timestamp":1728432194000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-32692-0_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030326913","9783030326920"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-32692-0_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"10 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/mlmi2019.web.unc.edu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"158","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"78","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"49% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}