{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:38:25Z","timestamp":1728535105483},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030322533"},{"type":"electronic","value":"9783030322540"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32254-0_14","type":"book-chapter","created":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T23:08:49Z","timestamp":1570662529000},"page":"119-127","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":50,"title":["Generating Large Labeled Data Sets for Laparoscopic Image Processing Tasks Using Unpaired Image-to-Image Translation"],"prefix":"10.1007","author":[{"given":"Micha","family":"Pfeiffer","sequence":"first","affiliation":[]},{"given":"Isabel","family":"Funke","sequence":"additional","affiliation":[]},{"given":"Maria R.","family":"Robu","sequence":"additional","affiliation":[]},{"given":"Sebastian","family":"Bodenstedt","sequence":"additional","affiliation":[]},{"given":"Leon","family":"Strenger","sequence":"additional","affiliation":[]},{"given":"Sandy","family":"Engelhardt","sequence":"additional","affiliation":[]},{"given":"Tobias","family":"Ro\u00df","sequence":"additional","affiliation":[]},{"given":"Matthew J.","family":"Clarkson","sequence":"additional","affiliation":[]},{"given":"Kurinchi","family":"Gurusamy","sequence":"additional","affiliation":[]},{"given":"Brian R.","family":"Davidson","sequence":"additional","affiliation":[]},{"given":"Lena","family":"Maier-Hein","sequence":"additional","affiliation":[]},{"given":"Carina","family":"Riediger","sequence":"additional","affiliation":[]},{"given":"Thilo","family":"Welsch","sequence":"additional","affiliation":[]},{"given":"J\u00fcrgen","family":"Weitz","sequence":"additional","affiliation":[]},{"given":"Stefanie","family":"Speidel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,10]]},"reference":[{"key":"14_CR1","unstructured":"Bujwid, S., Mart\u00ed, M., Azizpour, H., Pieropan, A.: GANtruth - an unpaired image-to-image translation method for driving scenarios (2018)"},{"key":"14_CR2","unstructured":"Chu, C., Zhmoginov, A., Sandler, M.: CycleGAN, a Master of Steganography. ArXiv abs\/1712.02950 (2017)"},{"key":"14_CR3","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"14_CR4","doi-asserted-by":"crossref","unstructured":"Gibson, E., et al.: Deep residual networks for automatic segmentation of laparoscopic videos of the liver (2017)","DOI":"10.1117\/12.2255975"},{"key":"14_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"731","DOI":"10.1007\/978-3-030-01240-3_44","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S-W Huang","year":"2018","unstructured":"Huang, S.-W., Lin, C.-T., Chen, S.-P., Wu, Y.-Y., Hsu, P.-H., Lai, S.-H.: AugGAN: cross domain adaptation with GAN-based data augmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 731\u2013744. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01240-3_44"},{"key":"14_CR6","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/978-3-030-01219-9_11","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Xun Huang","year":"2018","unstructured":"Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: The European Conference on Computer Vision (ECCV) (2018)"},{"key":"14_CR7","unstructured":"Iglovikov, V.I., Shvets, A.A.: TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. CoRR abs\/1801.05746 (2018)"},{"key":"14_CR8","doi-asserted-by":"crossref","unstructured":"Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: The European Conference on Computer Vision (ECCV) (2018)","DOI":"10.1007\/978-3-030-01246-5_3"},{"key":"14_CR9","unstructured":"Lee, K.H., Ros, G., Li, J., Gaidon, A.: SPIGAN: privileged adversarial learning from simulation. In: International Conference on Learning Representations (2019)"},{"issue":"9","key":"14_CR10","doi-asserted-by":"publisher","first-page":"691","DOI":"10.1038\/s41551-017-0132-7","volume":"1","author":"L Maier-Hein","year":"2017","unstructured":"Maier-Hein, L., et al.: Surgical data science for next-generation interventions. Nat. Biomed. Eng. 1(9), 691 (2017)","journal-title":"Nat. Biomed. Eng."},{"key":"14_CR11","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1109\/TMI.2016.2593957","volume":"36","author":"A Twinanda","year":"2016","unstructured":"Twinanda, A., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36, 86\u201397 (2016)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"14_CR12","unstructured":"Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, vol. 2, pp. 1398\u20131402 (2003)"},{"key":"14_CR13","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32254-0_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T00:11:16Z","timestamp":1728519076000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-32254-0_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030322533","9783030322540"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-32254-0_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"10 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2019.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1730","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"539","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.07","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6.31","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}