{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T09:20:17Z","timestamp":1743067217305,"version":"3.40.3"},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030322502"},{"type":"electronic","value":"9783030322519"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32251-9_63","type":"book-chapter","created":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T23:08:49Z","timestamp":1570662529000},"page":"575-582","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Unsupervised Clustering of Quantitative Imaging Phenotypes Using Autoencoder and Gaussian Mixture Model"],"prefix":"10.1007","author":[{"given":"Jianan","family":"Chen","sequence":"first","affiliation":[]},{"given":"Laurent","family":"Milot","sequence":"additional","affiliation":[]},{"given":"Helen M. C.","family":"Cheung","sequence":"additional","affiliation":[]},{"given":"Anne L.","family":"Martel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,10]]},"reference":[{"key":"63_CR1","doi-asserted-by":"publisher","unstructured":"Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5 (2014). https:\/\/doi.org\/10.1038\/ncomms5006","DOI":"10.1038\/ncomms5006"},{"issue":"8","key":"63_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s00330-018-5331-4","volume":"28","author":"HM Cheung","year":"2018","unstructured":"Cheung, H.M., et al.: Late gadolinium enhancement of colorectal liver metastases post-chemotherapy is associated with tumour fibrosis and overall survival post-hepatectomy. Eur. Radiol. 28(8), 1\u20138 (2018)","journal-title":"Eur. Radiol."},{"key":"63_CR3","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1109\/34.990138","volume":"3","author":"MAT Figueiredo","year":"2002","unstructured":"Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 3, 381\u2013396 (2002)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"63_CR4","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1097\/00000658-199909000-00004","volume":"230","author":"Y Fong","year":"1999","unstructured":"Fong, Y., Fortner, J., Sun, R.L., Brennan, M.F., Blumgart, L.H.: Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann. Surg. 230(3), 309 (1999)","journal-title":"Ann. Surg."},{"issue":"1","key":"63_CR5","doi-asserted-by":"publisher","first-page":"1556","DOI":"10.1038\/s41598-017-01524-7","volume":"7","author":"S Ha","year":"2017","unstructured":"Ha, S., Park, S., Bang, J.I., Kim, E.K., Lee, H.Y.: Metabolic radiomics for pretreatment 18 F-FDG PET\/CT to characterize locally advanced breast cancer: histopathologic characteristics, response to neoadjuvant chemotherapy, and prognosis. Sci. Rep. 7(1), 1556 (2017)","journal-title":"Sci. Rep."},{"key":"63_CR6","unstructured":"Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, pp. 971\u2013980 (2017)"},{"issue":"1","key":"63_CR7","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1148\/radiol.2018180179","volume":"290","author":"D Kontos","year":"2018","unstructured":"Kontos, D., et al.: Radiomic phenotypes of mammographic parenchymal complexity: toward augmenting breast density in breast cancer risk assessment. Radiology 290(1), 41\u201349 (2018)","journal-title":"Radiology"},{"issue":"1\u20132","key":"63_CR8","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/A:1023949509487","volume":"52","author":"S Monti","year":"2003","unstructured":"Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52(1\u20132), 91\u2013118 (2003)","journal-title":"Mach. Learn."},{"key":"63_CR9","doi-asserted-by":"publisher","unstructured":"Napel, S., Mu, W., Jardim-Perassi, B.V., Aerts, H.J., Gillies, R.J.: Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer, 4633\u20134649 (2018). https:\/\/doi.org\/10.1002\/cncr.31630","DOI":"10.1002\/cncr.31630"},{"key":"63_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41596-018-0103-9","volume":"14","author":"J Reimand","year":"2019","unstructured":"Reimand, J., et al.: Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, cytoscape and enrichmentmap. Nat. Protoc. 14, 1 (2019)","journal-title":"Nat. Protoc."},{"issue":"21","key":"63_CR11","doi-asserted-by":"publisher","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","volume":"77","author":"JJ Van Griethuysen","year":"2017","unstructured":"Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104\u2013e107 (2017)","journal-title":"Cancer Res."},{"issue":"2","key":"63_CR12","doi-asserted-by":"publisher","first-page":"1700232","DOI":"10.1002\/pmic.201700232","volume":"18","author":"B Wang","year":"2018","unstructured":"Wang, B., Ramazzotti, D., De Sano, L., Zhu, J., Pierson, E., Batzoglou, S.: SIMLR: a tool for large-scale genomic analyses by multi-kernel learning. Proteomics 18(2), 1700232 (2018)","journal-title":"Proteomics"},{"issue":"13","key":"63_CR13","doi-asserted-by":"publisher","first-page":"3334","DOI":"10.1158\/1078-0432.CCR-16-2415","volume":"23","author":"J Wu","year":"2017","unstructured":"Wu, J., et al.: Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways. Clin. Cancer Res. 23(13), 3334\u20133342 (2017). https:\/\/doi.org\/10.1158\/1078-0432.CCR-16-2415","journal-title":"Clin. Cancer Res."}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32251-9_63","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T00:19:32Z","timestamp":1728519572000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-32251-9_63"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030322502","9783030322519"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-32251-9_63","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"10 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2019.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1730","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"539","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.07","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6.31","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}