{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T12:44:28Z","timestamp":1743770668257,"version":"3.40.3"},"publisher-location":"Cham","reference-count":12,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030322441"},{"type":"electronic","value":"9783030322458"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32245-8_29","type":"book-chapter","created":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T23:08:49Z","timestamp":1570662529000},"page":"255-263","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":76,"title":["Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation"],"prefix":"10.1007","author":[{"given":"Junlin","family":"Yang","sequence":"first","affiliation":[]},{"given":"Nicha C.","family":"Dvornek","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Julius","family":"Chapiro","sequence":"additional","affiliation":[]},{"given":"MingDe","family":"Lin","sequence":"additional","affiliation":[]},{"given":"James S.","family":"Duncan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,10]]},"reference":[{"key":"29_CR1","unstructured":"Christ, P., Ettlinger, F., Gr\u00fcn, F., Lipkova, J., Kaissis, G.: LiTS-liver tumor segmentation challenge. ISBI and MICCAI (2017)"},{"key":"29_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/978-3-030-01219-9_11","volume-title":"Computer Vision \u2013 ECCV 2018","author":"X Huang","year":"2018","unstructured":"Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179\u2013196. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01219-9_11"},{"key":"29_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"777","DOI":"10.1007\/978-3-030-00934-2_86","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"J Jiang","year":"2018","unstructured":"Jiang, J., et al.: Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 777\u2013785. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00934-2_86"},{"key":"29_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"597","DOI":"10.1007\/978-3-319-59050-9_47","volume-title":"Information Processing in Medical Imaging","author":"K Kamnitsa","year":"2017","unstructured":"Kamnitsa, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597\u2013609. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-59050-9_47"},{"key":"29_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1007\/978-3-030-01246-5_3","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H-Y Lee","year":"2018","unstructured":"Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36\u201352. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_3"},{"key":"29_CR6","unstructured":"Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: Advances in Neural Information Processing Systems, pp. 5040\u20135048 (2016)"},{"key":"29_CR7","unstructured":"Narayanaswamy, S., et al.: Learning disentangled representations with semi-supervised deep generative models. In: Advances in Neural Information Processing Systems, pp. 5925\u20135935 (2017)"},{"key":"29_CR8","doi-asserted-by":"crossref","unstructured":"Oliva, M.R., Saini, S.: Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging 4(Spec No A), S42 (2004)","DOI":"10.1102\/1470-7330.2004.0011"},{"key":"29_CR9","doi-asserted-by":"crossref","unstructured":"Perone, C.S., Cohen-Adad, J.: Promises and limitations of deep learning for medical image segmentation. J. Med. Artif. Intell. 2 (2019)","DOI":"10.21037\/jmai.2019.01.01"},{"key":"29_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"29_CR11","unstructured":"Valindria, V.V., et al.: Domain adaptation for MRI organ segmentation using reverse classification accuracy. arXiv preprint arXiv:1806.00363 (2018)"},{"key":"29_CR12","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.neucom.2018.05.083","volume":"312","author":"M Wang","year":"2018","unstructured":"Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135\u2013153 (2018)","journal-title":"Neurocomputing"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32245-8_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T00:29:36Z","timestamp":1728520176000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-32245-8_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030322441","9783030322458"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-32245-8_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"10 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.miccai2019.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1730","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"539","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.07","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6.31","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}