{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T11:45:37Z","timestamp":1726055137078},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030322120"},{"type":"electronic","value":"9783030322137"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-32213-7_9","type":"book-chapter","created":{"date-parts":[[2019,10,15]],"date-time":"2019-10-15T23:04:57Z","timestamp":1571180697000},"page":"122-134","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["MRI Brain Images Compression and Classification Using Different Classes of Neural Networks"],"prefix":"10.1007","author":[{"given":"Abdelhakim","family":"El Boustani","sequence":"first","affiliation":[]},{"given":"Essaid","family":"El Bachari","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,16]]},"reference":[{"key":"9_CR1","unstructured":"Jiang, W.W., Kiang, S.Z., Hakim, N.Z., Meadows, H.E.: Lossless compression for medical imaging systems using linear\/non-linear prediction and arithmetic coding. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 1, pp. 283\u2013286 (1993)"},{"issue":"10","key":"9_CR2","doi-asserted-by":"publisher","first-page":"283","DOI":"10.1109\/5.537112","volume":"84","author":"NG Panagiotidis","year":"1996","unstructured":"Panagiotidis, N.G., Kalogeras, D., Kollias, S.D., Stafylopatis, A.: Neural network-assisted effective lossy compression of medical images. Proc. IEEE 84(10), 283\u2013286 (1996)","journal-title":"Proc. IEEE"},{"issue":"5","key":"9_CR3","doi-asserted-by":"publisher","first-page":"628","DOI":"10.1109\/42.538940","volume":"15","author":"X Li","year":"1996","unstructured":"Li, X., Bhide, S., Kabuka, M.R.: Labeling of MR brain images using Boolean neural network. IEEE Trans. Med. Imaging 15(5), 628\u2013638 (1996)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"9_CR4","doi-asserted-by":"publisher","first-page":"737","DOI":"10.1016\/S0923-5965(98)00041-1","volume":"14","author":"J Jiang","year":"1999","unstructured":"Jiang, J.: Image compression with neural networks: a survey. Sig. Process. Image Commun. 14, 737\u2013760 (1999)","journal-title":"Sig. Process. Image Commun."},{"key":"9_CR5","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/0893-6080(90)90049-Q","volume":"3","author":"DF Specht","year":"1990","unstructured":"Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109\u2013118 (1990)","journal-title":"Neural Networks"},{"issue":"4","key":"9_CR6","doi-asserted-by":"publisher","first-page":"467","DOI":"10.1016\/0893-6080(91)90042-4","volume":"4","author":"M Mougeot","year":"1991","unstructured":"Mougeot, M., Azencott, R., Angeniol, B.: Image compression with back-propagation: improvement of the visual restoration using different cost functions. Neural Networks 4(4), 467\u2013476 (1991)","journal-title":"Neural Networks"},{"issue":"4","key":"9_CR7","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/BF02478259","volume":"5","author":"WS Mcculloch","year":"1943","unstructured":"Mcculloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115\u2013133 (1943)","journal-title":"Bull. Math. Biophys."},{"issue":"2","key":"9_CR8","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1109\/TIT.1962.1057692","volume":"8","author":"MK Hu","year":"1962","unstructured":"Hu, M.K.: Visual pattern recognition by moment invariant. IRE Trans. Info. Theory 8(2), 179\u2013187 (1962)","journal-title":"IRE Trans. Info. Theory"},{"issue":"8","key":"9_CR9","doi-asserted-by":"publisher","first-page":"1426","DOI":"10.1016\/j.mri.2013.05.002","volume":"31","author":"N Gordillo","year":"2013","unstructured":"Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426\u20131438 (2013)","journal-title":"Magn. Reson. Imaging"},{"key":"9_CR10","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1016\/j.compmedimag.2014.06.005","volume":"39","author":"I Dimitrovski","year":"2014","unstructured":"Dimitrovski, I., Kocev, D., Kitanovski, I., Loskovska, S., Dzeroski, S.: Improved medical image modality classification using a combination of visual and textual features. Comput. Med. Imaging Graph. 39, 14\u201326 (2014)","journal-title":"Comput. Med. Imaging Graph."},{"key":"9_CR11","unstructured":"Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T.L.: Machine learning for medical imaging. In: RSNA Annual Meeting, November 2016"},{"key":"9_CR12","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.eswa.2017.05.039","volume":"85","author":"C Affonso","year":"2017","unstructured":"Affonso, C., Rossi, A.L., Vieira, F., Carvalho, A.: Deep learning for biological image classification. Expert Syst. Appl. 85, 114\u2013122 (2017)","journal-title":"Expert Syst. Appl."},{"key":"9_CR13","doi-asserted-by":"crossref","unstructured":"R. Haralick, K. Shanmugam, and I. Dinstein \u201cTextural features for image classification\u201d. IEEE Trans. (1973)","DOI":"10.1109\/TSMC.1973.4309314"},{"key":"9_CR14","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/j.artmed.2017.06.009","volume":"79","author":"Q Tang","year":"2017","unstructured":"Tang, Q., Liu, Y., Liu, H.: Medical image classification via multiscale representation learning. Artif. Intell. Med. 79, 71\u201378 (2017)","journal-title":"Artif. Intell. Med."},{"key":"9_CR15","volume-title":"Building High-Level Features Using Large Scale Unsupervised Learning","author":"QV Le","year":"2012","unstructured":"Le, Q.V.: Building High-Level Features Using Large Scale Unsupervised Learning. Google Inc., USA (2012)"},{"key":"9_CR16","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/j.bspc.2017.07.007","volume":"39","author":"G Mohan","year":"2017","unstructured":"Mohan, G., Subashini, M.: MRI Based Medical Image Analysis: Survey on brain tumor grade classification. Biomed. Sig. Process. Control 39, 139\u2013161 (2017)","journal-title":"Biomed. Sig. Process. Control"},{"key":"9_CR17","doi-asserted-by":"crossref","unstructured":"Descombes, X., et al.: Vascular network segmentation: an unsupervised approach. In: IEEE 9th International Symposium of Biomedical Imaging (ISBI), vol. 0, pp. 1248\u20131251 (2012)","DOI":"10.1109\/ISBI.2012.6235788"},{"key":"9_CR18","doi-asserted-by":"crossref","unstructured":"Descombes, X., et al.: Brain tumor vascular network segmentation from micro-tomography. In: IEEE 8th International Symposium of Biomedical Imaging (ISBI), vol. 0, pp. 1113\u20131116 (2011)","DOI":"10.1109\/ISBI.2011.5872596"},{"key":"9_CR19","unstructured":"El Boustani, A., Kinsner, W.: Selective compression of MRI brain images using two classes of neural networks. In: Proceedings of the International Conference on Image and Signal Processing, ICISP01, vol. 1 of 2, pp. 216\u2013220 (2001)"},{"key":"9_CR20","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1016\/j.neunet.2017.12.005","volume":"99","author":"SR Kheradpisheh","year":"2017","unstructured":"Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56\u201367 (2017)","journal-title":"Neural Networks"},{"issue":"6","key":"9_CR21","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1007\/s10278-013-9622-7","volume":"26","author":"K Clark","year":"2013","unstructured":"Clark, K., et al.: Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045\u20131057 (2013)","journal-title":"J. Digit. Imaging"},{"key":"9_CR22","unstructured":"Mukkamala, M.C., Hein, M.: Variants of RMSProp and adagrad with logarithmic regret bounds. In: International Conference on Machine Learning, Sydney, Australia (2017)"},{"key":"9_CR23","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015)"},{"key":"9_CR24","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.patrec.2017.03.004","volume":"90","author":"S Roy","year":"2017","unstructured":"Roy, S., Das, N., Kundu, M., Nasipuri, M.: Handwritten Isolated Bangla Compound Character Recognition: a new benchmark using a novel deep learning approach. Pattern Recogn. Lett. 90, 15\u201321 (2017)","journal-title":"Pattern Recogn. Lett."},{"key":"9_CR25","unstructured":"El Boustani, A., Aatila, M., El Bachari, E., El Oirrak, A.: MRI brain images classification using convolutional neural networks. In: Attiogbe, C., et al. (eds.) MEDI 2019, Workshops, CCIS 1085, pp. x-y, 2019. Springer, Cham (2019)"}],"container-title":["Communications in Computer and Information Science","New Trends in Model and Data Engineering"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-32213-7_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,15]],"date-time":"2019-10-15T23:07:35Z","timestamp":1571180855000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-32213-7_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030322120","9783030322137"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-32213-7_9","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"16 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MEDI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Model and Data Engineering","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Toulouse","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"medi2019a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.irit.fr\/MEDI2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"11","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Peer Review Information from Medi International Workshops (DETECT, DSSGA and TRIDENT): out of 34 submissions and 1 invited paper, 13 full papers and 3 short papers were accepted","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}