{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T04:35:44Z","timestamp":1730349344188,"version":"3.28.0"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030316532"},{"type":"electronic","value":"9783030316549"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-31654-9_47","type":"book-chapter","created":{"date-parts":[[2019,10,31]],"date-time":"2019-10-31T00:05:31Z","timestamp":1572480331000},"page":"552-561","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Deep Convolutional Center-Based Clustering"],"prefix":"10.1007","author":[{"given":"Qinhong","family":"Yan","sequence":"first","affiliation":[]},{"given":"Meihan","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Weifu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Guocan","family":"Feng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,31]]},"reference":[{"key":"47_CR1","unstructured":"Chollet, F., et al.: Keras (2015). https:\/\/github.com\/fchollet\/keras"},{"key":"47_CR2","first-page":"2579","volume":"9","author":"LV Der Maaten","year":"2008","unstructured":"Der Maaten, L.V., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579\u20132605 (2008)","journal-title":"J. Mach. Learn. Res."},{"issue":"6","key":"47_CR3","doi-asserted-by":"publisher","first-page":"643","DOI":"10.1109\/34.927464","volume":"23","author":"A Georghiades","year":"2001","unstructured":"Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643\u2013660 (2001)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"47_CR4","doi-asserted-by":"crossref","unstructured":"Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: The IEEE International Conference on Computer Vision (ICCV), October 2017","DOI":"10.1109\/ICCV.2017.612"},{"key":"47_CR5","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http:\/\/www.deeplearningbook.org"},{"key":"47_CR6","doi-asserted-by":"crossref","unstructured":"Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI, pp. 1753\u20131759 (2017)","DOI":"10.24963\/ijcai.2017\/243"},{"key":"47_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1007\/978-3-319-70096-0_39","volume-title":"Neural Information Processing","author":"X Guo","year":"2017","unstructured":"Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 373\u2013382. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-70096-0_39"},{"key":"47_CR8","series-title":"Springer Series in Statistics","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-84858-7","volume-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"Trevor Hastie","year":"2009","unstructured":"Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. SSS. Springer, New York (2009). https:\/\/doi.org\/10.1007\/978-0-387-84858-7"},{"key":"47_CR9","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"issue":"11","key":"47_CR10","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"47_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1007\/978-3-642-21735-7_7","volume-title":"Artificial Neural Networks and Machine Learning \u2013 ICANN 2011","author":"J Masci","year":"2011","unstructured":"Masci, J., Meier, U., Cire\u015fan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52\u201359. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-21735-7_7"},{"key":"47_CR12","unstructured":"Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100). Technical report, Technical Report CUCS-006-96, February 1996"},{"issue":"11","key":"47_CR13","doi-asserted-by":"publisher","first-page":"1796","DOI":"10.1109\/TNN.2011.2162000","volume":"22","author":"F Nie","year":"2011","unstructured":"Nie, F., Zeng, Z., Tsang, I.W., Xu, D., Zhang, C.: Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw. 22(11), 1796\u20131808 (2011)","journal-title":"IEEE Trans. Neural Netw."},{"key":"47_CR14","doi-asserted-by":"crossref","unstructured":"Peng, X., Feng, J., Lu, J., Yau, W.Y., Yi, Z.: Cascade subspace clustering. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)","DOI":"10.1609\/aaai.v31i1.10824"},{"key":"47_CR15","unstructured":"Peng, X., Xiao, S., Feng, J., Yau, W.Y., Yi, Z.: Deep subspace clustering with sparsity prior. In: IJCAI, pp. 1925\u20131931 (2016)"},{"key":"47_CR16","unstructured":"Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)"},{"key":"47_CR17","unstructured":"Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478\u2013487 (2016)"},{"key":"47_CR18","unstructured":"Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: International Conference on Machine Learning, pp. 3861\u20133870 (2017)"},{"key":"47_CR19","doi-asserted-by":"crossref","unstructured":"Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Computer Vision and Pattern Recognition, pp. 5147\u20135156 (2016)","DOI":"10.1109\/CVPR.2016.556"},{"issue":"10","key":"47_CR20","doi-asserted-by":"publisher","first-page":"2761","DOI":"10.1109\/TIP.2010.2049235","volume":"19","author":"Y Yang","year":"2010","unstructured":"Yang, Y., Xu, D., Nie, F., Yan, S., Zhuang, Y.: Image clustering using local discriminant models and global integration. IEEE Trans. Image Process. 19(10), 2761\u20132773 (2010)","journal-title":"IEEE Trans. Image Process."}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-31654-9_47","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T00:11:35Z","timestamp":1730333495000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-31654-9_47"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030316532","9783030316549"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-31654-9_47","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"31 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Xi'an","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 November 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.prcv2019.com\/en\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"412","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"165","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}