{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T03:12:17Z","timestamp":1743131537124,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030307929"},{"type":"electronic","value":"9783030307936"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-30793-6_28","type":"book-chapter","created":{"date-parts":[[2019,10,16]],"date-time":"2019-10-16T23:05:00Z","timestamp":1571267100000},"page":"487-504","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":51,"title":["Learning to Rank Query Graphs for Complex Question Answering over Knowledge Graphs"],"prefix":"10.1007","author":[{"given":"Gaurav","family":"Maheshwari","sequence":"first","affiliation":[]},{"given":"Priyansh","family":"Trivedi","sequence":"additional","affiliation":[]},{"given":"Denis","family":"Lukovnikov","sequence":"additional","affiliation":[]},{"given":"Nilesh","family":"Chakraborty","sequence":"additional","affiliation":[]},{"given":"Asja","family":"Fischer","sequence":"additional","affiliation":[]},{"given":"Jens","family":"Lehmann","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,10,17]]},"reference":[{"key":"28_CR1","doi-asserted-by":"crossref","unstructured":"Bast, H., Haussmann, E.: More accurate question answering on freebase. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1431\u20131440. ACM (2015)","DOI":"10.1145\/2806416.2806472"},{"key":"28_CR2","doi-asserted-by":"publisher","unstructured":"Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1415\u20131425. Association for Computational Linguistics (2014). https:\/\/doi.org\/10.3115\/v1\/P14-1133","DOI":"10.3115\/v1\/P14-1133"},{"key":"28_CR3","doi-asserted-by":"crossref","unstructured":"Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2015)","DOI":"10.18653\/v1\/D15-1075"},{"key":"28_CR4","unstructured":"Cohen, W.W.: TensorLog: a differentiable deductive database. arXiv preprint arXiv:1605.06523 (2016)"},{"issue":"5","key":"28_CR5","doi-asserted-by":"publisher","first-page":"565","DOI":"10.14778\/3055540.3055549","volume":"10","author":"Wanyun Cui","year":"2017","unstructured":"Cui, W., Xiao, Y., Wang, H., Song, Y., Hwang, S.w., Wang, W.: KBQA: learning question answering over QA corpora and knowledge bases. Proc. VLDB Endow. 10(5), 565\u2013576 (2017). https:\/\/doi.org\/10.14778\/3055540.3055549","journal-title":"Proceedings of the VLDB Endowment"},{"key":"28_CR6","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"28_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"300","DOI":"10.1007\/978-3-319-34129-3_19","volume-title":"The Semantic Web. Latest Advances and New Domains","author":"M Dubey","year":"2016","unstructured":"Dubey, M., Dasgupta, S., Sharma, A., H\u00f6ffner, K., Lehmann, J.: AskNow: a framework for natural language query formalization in SPARQL. In: Sack, H., Blomqvist, E., d\u2019Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 300\u2013316. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-34129-3_19"},{"key":"28_CR8","doi-asserted-by":"crossref","unstructured":"Fader, A., Zettlemoyer, L., Etzioni, O.: Open question answering over curated and extracted knowledge bases. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1156\u20131165. ACM (2014)","DOI":"10.1145\/2623330.2623677"},{"issue":"8","key":"28_CR9","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"28_CR10","doi-asserted-by":"crossref","unstructured":"Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 328\u2013339 (2018)","DOI":"10.18653\/v1\/P18-1031"},{"key":"28_CR11","doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)","DOI":"10.3115\/v1\/D14-1181"},{"issue":"2","key":"28_CR12","doi-asserted-by":"crossref","first-page":"167","DOI":"10.3233\/SW-140134","volume":"6","author":"J Lehmann","year":"2015","unstructured":"Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167\u2013195 (2015)","journal-title":"Seman. Web"},{"key":"28_CR13","unstructured":"Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)"},{"key":"28_CR14","doi-asserted-by":"crossref","unstructured":"Lukovnikov, D., Fischer, A., Lehmann, J.: Pretrained transformers for simple question answering over knowledge graphs. In: International Semantic Web Conference. Springer, Heidelberg (2019)","DOI":"10.1007\/978-3-030-30793-6_27"},{"key":"28_CR15","doi-asserted-by":"crossref","unstructured":"Mohammed, S., Shi, P., Lin, J.: Strong baselines for simple question answering over knowledge graphs with and without neural networks. arXiv preprint arXiv:1712.01969 (2017)","DOI":"10.18653\/v1\/N18-2047"},{"key":"28_CR16","doi-asserted-by":"publisher","unstructured":"Parikh, A., T\u00e4ckstr\u00f6m, O., Das, D., Uszkoreit, J.: A decomposable attention model for natural language inference. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2249\u20132255. Association for Computational Linguistics (2016). https:\/\/doi.org\/10.18653\/v1\/D16-1244, http:\/\/www.aclweb.org\/anthology\/D16-1244","DOI":"10.18653\/v1\/D16-1244"},{"key":"28_CR17","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014). http:\/\/www.aclweb.org\/anthology\/D14-1162","DOI":"10.3115\/v1\/D14-1162"},{"key":"28_CR18","unstructured":"Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018). https:\/\/s3-us-west-2.amazonaws.com\/openai-assets\/research-covers\/language-unsupervised\/language_ understanding_paper.pdf"},{"key":"28_CR19","doi-asserted-by":"crossref","unstructured":"Reddy, S., T\u00e4ckstr\u00f6m, O., Petrov, S., Steedman, M., Lapata, M.: Universal semantic parsing. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 89\u2013101. Association for Computational Linguistics (2017). http:\/\/aclweb.org\/anthology\/D17-1009","DOI":"10.18653\/v1\/D17-1009"},{"key":"28_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1007\/978-3-319-68204-4_22","volume-title":"The Semantic Web \u2013 ISWC 2017","author":"P Trivedi","year":"2017","unstructured":"Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for complex question answering over knowledge graphs. In: d\u2019Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 210\u2013218. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-68204-4_22"},{"key":"28_CR21","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1007\/978-3-319-69146-6_6","volume-title":"Semantic Web Challenges","author":"R Usbeck","year":"2017","unstructured":"Usbeck, R., Ngomo, A.-C.N., Haarmann, B., Krithara, A., R\u00f6der, M., Napolitano, G.: 7th open challenge on question answering over linked data (QALD-7). In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 59\u201369. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-69146-6_6"},{"key":"28_CR22","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1007\/978-3-662-45924-9_30","volume-title":"Natural Language Processing and Chinese Computing","author":"K Xu","year":"2014","unstructured":"Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via phrasal semantic parsing. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Natural Language Processing and Chinese Computing. Communications in Computer and Information Science, vol. 496, pp. 333\u2013344. Springer, Berlin (2014). https:\/\/doi.org\/10.1007\/978-3-662-45924-9_30"},{"key":"28_CR23","doi-asserted-by":"crossref","unstructured":"Yih, W.T., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 1321\u20131331 (2015)","DOI":"10.3115\/v1\/P15-1128"},{"key":"28_CR24","doi-asserted-by":"publisher","unstructured":"Yu, M., Yin, W., Hasan, K.S., dos Santos, C., Xiang, B., Zhou, B.: Improved neural relation detection for knowledge base question answering. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 571\u2013581. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/P17-1053, http:\/\/www.aclweb.org\/anthology\/P17-1053","DOI":"10.18653\/v1\/P17-1053"}],"container-title":["Lecture Notes in Computer Science","The Semantic Web \u2013 ISWC 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-30793-6_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T23:14:49Z","timestamp":1729120489000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-30793-6_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030307929","9783030307936"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-30793-6_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"17 October 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISWC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Semantic Web Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Auckland","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Zealand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 October 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 October 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"semweb2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iswc2019.semanticweb.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single- and Double blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"283","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"74","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}