{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T14:34:02Z","timestamp":1726065242759},"publisher-location":"Cham","reference-count":98,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030306700"},{"type":"electronic","value":"9783030306717"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-30671-7_1","type":"book-chapter","created":{"date-parts":[[2020,1,8]],"date-time":"2020-01-08T03:02:31Z","timestamp":1578452551000},"page":"1-15","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Domain Adaptation for Visual Understanding"],"prefix":"10.1007","author":[{"given":"Soumyadeep","family":"Ghosh","sequence":"first","affiliation":[]},{"given":"Richa","family":"Singh","sequence":"additional","affiliation":[]},{"given":"Mayank","family":"Vatsa","sequence":"additional","affiliation":[]},{"given":"Nalini","family":"Ratha","sequence":"additional","affiliation":[]},{"given":"Vishal M.","family":"Patel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,1,9]]},"reference":[{"issue":"4","key":"1_CR1","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1145\/954339.954342","volume":"35","author":"W Zhao","year":"2003","unstructured":"Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399\u2013458","journal-title":"ACM Comput Surv"},{"issue":"7","key":"1_CR2","doi-asserted-by":"publisher","first-page":"1098","DOI":"10.1016\/j.imavis.2010.01.009","volume":"28","author":"R Singh","year":"2010","unstructured":"Singh R, Vatsa M, Ross A, Noore A (2010) Biometric classifier update using online learning: a case study in near infrared face verification. Image Vis Comput 28(7):1098\u20131105","journal-title":"Image Vis Comput"},{"issue":"11","key":"1_CR3","doi-asserted-by":"publisher","first-page":"3428","DOI":"10.1016\/j.patcog.2015.05.002","volume":"48","author":"S Bharadwaj","year":"2015","unstructured":"Bharadwaj S, Bhatt HS, Singh R, Vatsa M, Noore A (2015) Qfuse: online learning framework for adaptive biometric system. Pattern Recognit 48(11):3428\u20133439","journal-title":"Pattern Recognit"},{"key":"1_CR4","doi-asserted-by":"crossref","unstructured":"Singh R, Vatsa M, Ross A, Noore A (2009) Online learning in biometrics: a case study in face classifier update. In: International conference on biometrics: theory, applications, and systems, pp 1\u20136","DOI":"10.1109\/BTAS.2009.5339071"},{"key":"1_CR5","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.patcog.2015.11.013","volume":"56","author":"H Mehrotra","year":"2016","unstructured":"Mehrotra H, Singh R, Vatsa M, Majhi B (2016) Incremental granular relevance vector machine: a case study in multimodal biometrics. Pattern Recognit 56:63\u201376","journal-title":"Pattern Recognit"},{"key":"1_CR6","doi-asserted-by":"crossref","unstructured":"Chen JC, Patel VM, Chellappa R (2016) Unconstrained face verification using deep CNN features. In: IEEE winter conference on applications of computer vision, pp 1\u20139","DOI":"10.1109\/WACV.2016.7477557"},{"key":"1_CR7","doi-asserted-by":"publisher","first-page":"766","DOI":"10.1007\/978-3-642-33783-3_55","volume-title":"Computer Vision \u2013 ECCV 2012","author":"Yi-Chen Chen","year":"2012","unstructured":"Chen YC, Patel VM, Phillips PJ, Chellappa R (2012) Dictionary-based face recognition from video. In: European conference on computer vision, pp 766\u2013779"},{"issue":"9","key":"1_CR8","doi-asserted-by":"publisher","first-page":"1627","DOI":"10.1109\/TPAMI.2009.167","volume":"32","author":"PF Felzenszwalb","year":"2010","unstructured":"Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627\u20131645","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"1_CR9","doi-asserted-by":"publisher","first-page":"13","DOI":"10.1145\/1177352.1177355","volume":"38","author":"A Yilmaz","year":"2006","unstructured":"Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13","journal-title":"ACM Comput Surv"},{"key":"1_CR10","unstructured":"Li LJ, Socher R, Fei-Fei L (2009) Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In: IEEE conference on computer vision and pattern recognition, pp 2036\u20132043"},{"issue":"1","key":"1_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-012-9356-9","volume":"43","author":"SS Rautaray","year":"2015","unstructured":"Rautaray SS, Agrawal A (2015) Vision based hand gesture recognition for human computer interaction: a survey. Artif Intell Rev 43(1):1\u201354","journal-title":"Artif Intell Rev"},{"key":"1_CR12","doi-asserted-by":"publisher","DOI":"10.1201\/9781420037555","volume-title":"Shape analysis and classification: theory and practice","author":"Costa L Fontoura da","year":"2010","unstructured":"da Fontoura Costa L, Cesar RM Jr (2010) Shape analysis and classification: theory and practice. CRC Press, Boca Raton"},{"issue":"1","key":"1_CR13","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1006\/jvci.1999.0413","volume":"10","author":"Y Rui","year":"1999","unstructured":"Rui Y, Huang TS, Chang SF (1999) Image retrieval: current techniques, promising directions, and open issues. J Vis Commun Image Represent 10(1):39\u201362","journal-title":"J Vis Commun Image Represent"},{"key":"1_CR14","first-page":"1","volume-title":"Lecture Notes in Computer Science","author":"Ling Bao","year":"2004","unstructured":"Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: International conference on pervasive computing, pp 1\u201317"},{"issue":"12","key":"1_CR15","doi-asserted-by":"publisher","first-page":"5654","DOI":"10.1109\/TIP.2014.2362658","volume":"23","author":"HS Bhatt","year":"2014","unstructured":"Bhatt HS, Singh R, Vatsa M, Ratha NK (2014) Improving cross-resolution face matching using ensemble-based co-transfer learning. IEEE Trans Image Process 23(12):5654\u20135669","journal-title":"IEEE Trans Image Process"},{"key":"1_CR16","doi-asserted-by":"crossref","unstructured":"Singh M, Nagpal S, Vatsa M, Singh R, Majumdar A (2018) Identity aware synthesis for cross resolution face recognition. In: IEEE conference on computer vision and pattern recognition workshops, pp 479\u2013488","DOI":"10.1109\/CVPRW.2018.00089"},{"key":"1_CR17","doi-asserted-by":"crossref","unstructured":"Dhamecha TI, Sharma P, Singh R, Vatsa M (2014) On effectiveness of histogram of oriented gradient features for visible to near infrared face matching. In: International conference on pattern recognition, pp 1788\u20131793","DOI":"10.1109\/ICPR.2014.314"},{"key":"1_CR18","doi-asserted-by":"crossref","unstructured":"Ghosh S, Dhamecha TI, Keshari R, Singh R, Vatsa M (2015) Feature and keypoint selection for visible to near-infrared face matching. In: International conference on biometrics theory, applications and systems, pp 1\u20137","DOI":"10.1109\/BTAS.2015.7358760"},{"issue":"5","key":"1_CR19","doi-asserted-by":"publisher","first-page":"1034","DOI":"10.1109\/TPAMI.2015.2469282","volume":"38","author":"SP Mudunuri","year":"2016","unstructured":"Mudunuri SP, Biswas S (2016) Low resolution face recognition across variations in pose and illumination. IEEE Trans Pattern Anal Mach Intell 38(5):1034\u20131040","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"12","key":"1_CR20","first-page":"1122","volume":"9","author":"D Yadav","year":"2014","unstructured":"Yadav D, Singh R, Vatsa M, Noore A (2014) Recognizing age-separated face images: humans and machines. PloS One 9(12):1122\u20131134","journal-title":"PloS One"},{"issue":"7","key":"1_CR21","doi-asserted-by":"publisher","first-page":"e99212","DOI":"10.1371\/journal.pone.0099212","volume":"9","author":"TI Dhamecha","year":"2014","unstructured":"Dhamecha TI, Singh R, Vatsa M, Kumar A (2014) Recognizing disguised faces: human and machine evaluation. PloS One 9(7):e99212","journal-title":"PloS One"},{"key":"1_CR22","doi-asserted-by":"crossref","unstructured":"Kushwaha V, Singh M, Singh R, Vatsa M, Ratha N, Chellappa R (2018) Disguised faces in the wild. In: IEEE conference on computer vision and pattern recognition workshops, pp 1\u20139","DOI":"10.1109\/CVPRW.2018.00008"},{"issue":"12","key":"1_CR23","doi-asserted-by":"publisher","first-page":"5479","DOI":"10.1109\/TIP.2015.2479405","volume":"24","author":"HV Nguyen","year":"2015","unstructured":"Nguyen HV, Ho HT, Patel VM, Chellappa R (2015) Dash-n: joint hierarchical domain adaptation and feature learning. IEEE Trans Image Process 24(12):5479\u20135491","journal-title":"IEEE Trans Image Process"},{"key":"1_CR24","doi-asserted-by":"crossref","unstructured":"Shrivastava A, Shekhar S, Patel VM (2014) Unsupervised domain adaptation using parallel transport on grassmann manifold. In: IEEE winter conference on applications of computer vision, pp 277\u2013284","DOI":"10.1109\/WACV.2014.6836088"},{"key":"1_CR25","doi-asserted-by":"crossref","unstructured":"Shekhar S, Patel VM, Nguyen HV, Chellappa R (2013) Generalized domain-adaptive dictionaries. In: 2013 IEEE conference on computer vision and pattern recognition, pp 361\u2013368","DOI":"10.1109\/CVPR.2013.53"},{"key":"1_CR26","doi-asserted-by":"publisher","first-page":"631","DOI":"10.1007\/978-3-642-33765-9_45","volume-title":"Computer Vision \u2013 ECCV 2012","author":"Qiang Qiu","year":"2012","unstructured":"Qiu Q, Patel VM, Turaga P, Chellappa R (2012) Domain adaptive dictionary learning. In: European conference on computer vision, pp 631\u2013645"},{"key":"1_CR27","doi-asserted-by":"crossref","unstructured":"Zhang H, Patel VM, Shekhar S, Chellappa R (2015) Domain adaptive sparse representation-based classification. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), vol 1, pp 1\u20138","DOI":"10.1109\/FG.2015.7163133"},{"issue":"7","key":"1_CR28","doi-asserted-by":"publisher","first-page":"1630","DOI":"10.1109\/TIFS.2016.2538744","volume":"11","author":"S Bharadwaj","year":"2016","unstructured":"Bharadwaj S, Bhatt HS, Vatsa M, Singh R (2016) Domain specific learning for newborn face recognition. IEEE Trans Inf Forensics Secur 11(7):1630\u20131641","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"1_CR29","doi-asserted-by":"crossref","unstructured":"Bharadwaj S, Bhatt HS, Singh R, Vatsa M, Singh SK (2010) Face recognition for newborns: a preliminary study. In: IEEE international conference on biometrics: theory, applications and systems, pp 1\u20136","DOI":"10.1109\/BTAS.2010.5634500"},{"issue":"6","key":"1_CR30","doi-asserted-by":"publisher","first-page":"770","DOI":"10.1109\/TKDE.2006.94","volume":"18","author":"X Yin","year":"2006","unstructured":"Yin X, Han J, Yang J, Philip SY (2006) Efficient classification across multiple database relations: a crossmine approach. IEEE Trans Knowl Data Eng 18(6):770\u2013783","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"4","key":"1_CR31","doi-asserted-by":"publisher","first-page":"500","DOI":"10.1109\/TKDE.2007.1016","volume":"19","author":"LI Kuncheva","year":"2007","unstructured":"Kuncheva LI, Rodriguez JJ (2007) Classifier ensembles with a random linear oracle. IEEE Trans Knowl Data Eng 19(4):500\u2013508","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"2","key":"1_CR32","doi-asserted-by":"publisher","first-page":"156","DOI":"10.1109\/TKDE.2007.190677","volume":"20","author":"E Baralis","year":"2008","unstructured":"Baralis E, Chiusano S, Garza P (2008) A lazy approach to associative classification. IEEE Trans Knowl Data Eng 20(2):156\u2013171","journal-title":"IEEE Trans Knowl Data Eng"},{"issue":"2","key":"1_CR33","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1016\/S0378-3758(00)00115-4","volume":"90","author":"H Shimodaira","year":"2000","unstructured":"Shimodaira H (2000) Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plan Inference 90(2):227\u2013244","journal-title":"J Stat Plan Inference"},{"issue":"10","key":"1_CR34","doi-asserted-by":"publisher","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","volume":"22","author":"SJ Pan","year":"2010","unstructured":"Pan SJ, Yang Q et al (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345\u20131359","journal-title":"IEEE Trans Knowl Data Eng"},{"key":"1_CR35","unstructured":"Socher R, Ganjoo M, Manning CD, Ng A (2013) Zero-shot learning through cross-modal transfer. In: Advances in neural information processing systems, pp 935\u2013943"},{"key":"1_CR36","unstructured":"Palatucci M, Pomerleau D, Hinton GE, Mitchell TM (2009) Zero-shot learning with semantic output codes. In: Advances in neural information processing systems, pp 1410\u20131418"},{"key":"1_CR37","unstructured":"Romera-Paredes B, Torr P (2015) An embarrassingly simple approach to zero-shot learning. In: International conference on machine learning, pp 2152\u20132161"},{"key":"1_CR38","doi-asserted-by":"crossref","unstructured":"Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from unlabeled data. In: International conference on machine learning, pp 759\u2013766","DOI":"10.1145\/1273496.1273592"},{"key":"1_CR39","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1007\/3-540-61510-5_45","volume-title":"Artificial Neural Networks \u2014 ICANN 96","author":"V. Blanz","year":"1996","unstructured":"Blanz V, Sch\u00f6lkopf B, B\u00fclthoff H, Burges C, Vapnik V, Vetter T (1996) Comparison of view-based object recognition algorithms using realistic 3D models. In: International joint conference on artificial intelligence, pp 251\u2013256"},{"key":"1_CR40","doi-asserted-by":"crossref","unstructured":"LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance to pose and lighting. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 97\u2013104","DOI":"10.1109\/CVPR.2004.1315150"},{"key":"1_CR41","doi-asserted-by":"crossref","unstructured":"Liebelt J, Schmid C (2010) Multi-view object class detection with a 3D geometric model. In: IEEE conference on computer vision and pattern recognition, pp 1688\u20131695","DOI":"10.1109\/CVPR.2010.5539836"},{"issue":"4","key":"1_CR42","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1016\/j.cviu.2010.12.001","volume":"115","author":"S Moore","year":"2011","unstructured":"Moore S, Bowden R (2011) Local binary patterns for multi-view facial expression recognition. Elsevier Comput Vis Image Underst 115(4):541\u2013558","journal-title":"Elsevier Comput Vis Image Underst"},{"key":"1_CR43","doi-asserted-by":"crossref","unstructured":"Juefei-Xu F, Pal DK, Savvides M (2015) NIR-VIS heterogeneous face recognition via cross-spectral joint dictionary learning and reconstruction. In: IEEE conference on computer vision and pattern recognition, pp 141\u2013150","DOI":"10.1109\/CVPRW.2015.7301308"},{"issue":"3","key":"1_CR44","doi-asserted-by":"publisher","first-page":"733","DOI":"10.1109\/TIFS.2017.2766039","volume":"13","author":"J Wang","year":"2018","unstructured":"Wang J, Wang G, Zhou M (2018) Bimodal vein data mining via cross-selected-domain knowledge transfer. IEEE Trans Inf Forensics Secur 13(3):733\u2013744","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"1_CR45","doi-asserted-by":"crossref","unstructured":"Dai W, Yang Q, Xue GR, Yu Y (2008) Self-taught clustering. In: International conference on machine learning, pp 200\u2013207","DOI":"10.1145\/1390156.1390182"},{"key":"1_CR46","doi-asserted-by":"crossref","unstructured":"Wang Z, Song Y, Zhang C (2008) Transferred dimensionality reduction. In: Joint European conference on machine learning and knowledge discovery in databases, pp 550\u2013565","DOI":"10.1007\/978-3-540-87481-2_36"},{"key":"1_CR47","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.neucom.2012.08.056","volume":"120","author":"B Du","year":"2013","unstructured":"Du B, Zhang L, Tao D, Zhang D (2013) Unsupervised transfer learning for target detection from hyperspectral images. Elsevier Neurocomputing 120:72\u201382","journal-title":"Elsevier Neurocomputing"},{"key":"1_CR48","doi-asserted-by":"crossref","unstructured":"Peng P, Xiang T, Wang Y, Pontil M, Gong S, Huang T, Tian Y (2016) Unsupervised cross-dataset transfer learning for person re-identification. In: IEEE conference on computer vision and pattern recognition, pp 1306\u20131315","DOI":"10.1109\/CVPR.2016.146"},{"key":"1_CR49","unstructured":"Pinheiro PO, Element A (2017) Unsupervised domain adaptation with similarity learning. In: IEEE conference on computer vision and pattern recognition, pp 8004\u20138013"},{"key":"1_CR50","doi-asserted-by":"publisher","first-page":"615","DOI":"10.1016\/j.patcog.2018.04.027","volume":"81","author":"B Yang","year":"2018","unstructured":"Yang B, Ma AJ, Yuen PC (2018) Learning domain-shared group-sparse representation for unsupervised domain adaptation. Elsevier Pattern Recognit 81:615\u2013632","journal-title":"Elsevier Pattern Recognit"},{"issue":"3","key":"1_CR51","doi-asserted-by":"publisher","first-page":"671","DOI":"10.1016\/j.bbe.2018.04.008","volume":"38","author":"Pendar Alirezazadeh","year":"2018","unstructured":"Alirezazadeh P, Hejrati B, Monsef-Esfehani A, Fathi A (2018) Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images. Elsevier Biocyber Biomed Eng 38(3):671\u2013683","journal-title":"Biocybernetics and Biomedical Engineering"},{"key":"1_CR52","unstructured":"Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) The Caltech-UCSD birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology"},{"key":"1_CR53","doi-asserted-by":"crossref","unstructured":"Krause J, Stark M, Deng J, Fei-Fei L (2013) 3D object representations for fine-grained categorization. In: IEEE workshop on 3D representation and recognition (3dRR-13), Sydney, Australia","DOI":"10.1109\/ICCVW.2013.77"},{"key":"1_CR54","doi-asserted-by":"crossref","unstructured":"Peng X, Hoffman J, Yu SX, Saenko K (2016) Fine-to-coarse knowledge transfer for low-res image classification. arXiv:1605.06695","DOI":"10.1109\/ICIP.2016.7533047"},{"key":"1_CR55","doi-asserted-by":"publisher","first-page":"656","DOI":"10.1016\/j.knosys.2018.09.027","volume":"163","author":"Yuan Yao","year":"2019","unstructured":"Yao Y, Li X, Ye Y, Liu F, Ng MK, Huang Z, Zhang Y (2018) Low-resolution image categorization via heterogeneous domain adaptation. Knowl Based Syst 163:656\u2013665","journal-title":"Knowledge-Based Systems"},{"key":"1_CR56","doi-asserted-by":"crossref","unstructured":"Hu J, Lu J, Tan YP (2015) Deep transfer metric learning. In: IEEE conference on computer vision and pattern recognition, pp 325\u2013333","DOI":"10.1109\/CVPR.2015.7298629"},{"key":"1_CR57","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1016\/j.neucom.2016.04.046","volume":"207","author":"X Wang","year":"2016","unstructured":"Wang X, Duan X, Bai X (2016) Deep sketch feature for cross-domain image retrieval. Elsevier Neurocomputing 207:387\u2013397","journal-title":"Elsevier Neurocomputing"},{"key":"1_CR58","doi-asserted-by":"crossref","unstructured":"Mittal P, Vatsa M, Singh R (2015) Composite sketch recognition via deep network-a transfer learning approach. In: IAPR international conference on biometrics, pp 251\u2013256","DOI":"10.1109\/ICB.2015.7139092"},{"key":"1_CR59","unstructured":"Liu X, Song L, Wu X, Tan T (2016) Transferring deep representation for NIR-VIS heterogeneous face recognition. In: IAPR international conference on biometrics, pp 1\u20138"},{"key":"1_CR60","unstructured":"Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:1503.02531"},{"key":"1_CR61","doi-asserted-by":"crossref","unstructured":"Tzeng E, Hoffman J, Darrell T, Saenko K (2015) Simultaneous deep transfer across domains and tasks. In: IEEE international conference on computer vision, pp 4068\u20134076","DOI":"10.1109\/ICCV.2015.463"},{"key":"1_CR62","doi-asserted-by":"crossref","unstructured":"Gebru T, Hoffman J, Fei-Fei L (2017) Fine-grained recognition in the wild: a multi-task domain adaptation approach. In: International conference on computer vision, pp 1358\u20131367","DOI":"10.1109\/ICCV.2017.151"},{"key":"1_CR63","doi-asserted-by":"crossref","unstructured":"Motiian S, Piccirilli M, Adjeroh DA, Doretto G (2017) Unified deep supervised domain adaptation and generalization. In: IEEE international conference on computer vision, pp 5715\u20135725","DOI":"10.1109\/ICCV.2017.609"},{"key":"1_CR64","unstructured":"Duan L, Xu D, Tsang I (2012) Learning with augmented features for heterogeneous domain adaptation. arXiv:1206.4660"},{"key":"1_CR65","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1201\/b11431-6","volume-title":"Manifold Learning Theory and Applications","author":"Chang Wang","year":"2011","unstructured":"Wang C, Mahadevan S (2011) Heterogeneous domain adaptation using manifold alignment. In: International joint conference on artificial intelligence, vol 22, pp 1541\u20131546"},{"key":"1_CR66","unstructured":"Zhou JT, Tsang IW, Pan SJ, Tan M (2014) Heterogeneous domain adaptation for multiple classes. In: Artificial intelligence and statistics, pp 1095\u20131103"},{"key":"1_CR67","doi-asserted-by":"crossref","unstructured":"Kulis B, Saenko K, Darrell T (2011) What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: IEEE conference on computer vision and pattern recognition, pp 1785\u20131792","DOI":"10.1109\/CVPR.2011.5995702"},{"key":"1_CR68","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1007\/978-3-642-15561-1_16","volume-title":"Computer Vision \u2013 ECCV 2010","author":"Kate Saenko","year":"2010","unstructured":"Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: European conference on computer vision, pp 213\u2013226"},{"key":"1_CR69","unstructured":"Jhuo IH, Liu D, Lee D, Chang SF (2012) Robust visual domain adaptation with low-rank reconstruction. In: IEEE conference on computer vision and pattern recognition, pp 2168\u20132175"},{"key":"1_CR70","doi-asserted-by":"crossref","unstructured":"Tan B, Song Y, Zhong E, Yang Q (2015) Transitive transfer learning. In: International conference on knowledge discovery and data mining, pp 1155\u20131164","DOI":"10.1145\/2783258.2783295"},{"key":"1_CR71","doi-asserted-by":"crossref","unstructured":"Tan B, Zhang Y, Pan SJ, Yang Q (2017) Distant domain transfer learning. In: AAAI conference on artificial intelligence, pp 2604\u20132610","DOI":"10.1609\/aaai.v31i1.10826"},{"key":"1_CR72","doi-asserted-by":"crossref","unstructured":"Baktashmotlagh M, Harandi MT, Lovell BC, Salzmann M (2013) Unsupervised domain adaptation by domain invariant projection. In: IEEE international conference on computer vision, pp 769\u2013776","DOI":"10.1109\/ICCV.2013.100"},{"key":"1_CR73","unstructured":"Long M, Zhu H, Wang J, Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. In: Advances in neural information processing systems, pp 136\u2013144"},{"key":"1_CR74","unstructured":"Zhang X, Yu FX, Chang SF, Wang S (2015) Deep transfer network: unsupervised domain adaptation. arXiv:1503.00591"},{"key":"1_CR75","doi-asserted-by":"crossref","unstructured":"Bousmalis K, Silberman N, Dohan D, Erhan D, Krishnan D (2017) Unsupervised pixel-level domain adaptation with generative adversarial networks. In: IEEE conference on computer vision and pattern recognition, pp 3722\u20133731","DOI":"10.1109\/CVPR.2017.18"},{"key":"1_CR76","unstructured":"Liu MY, Tuzel O (2016) Coupled generative adversarial networks. In: Advances in neural information processing systems, pp 469\u2013477"},{"key":"1_CR77","doi-asserted-by":"crossref","unstructured":"Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. In: International conference on computer vision, pp 1125\u20131134","DOI":"10.1109\/CVPR.2017.632"},{"key":"1_CR78","doi-asserted-by":"crossref","unstructured":"Yi Z, Zhang HR, Tan P, Gong M (2017) Dualgan: unsupervised dual learning for image-to-image translation. In: International conference on computer vision, pp 2868\u20132876","DOI":"10.1109\/ICCV.2017.310"},{"key":"1_CR79","unstructured":"Tzeng E, Devin C, Hoffman J, Finn C, Abbeel P, Levine S, Saenko K, Darrell T (2015) Adapting deep visuomotor representations with weak pairwise constraints. arXiv:1511.07111"},{"key":"1_CR80","unstructured":"Ganin Y, Lempitsky V (2014) Unsupervised domain adaptation by backpropagation. arXiv:1409.7495"},{"issue":"1","key":"1_CR81","first-page":"2096","volume":"17","author":"Y Ganin","year":"2016","unstructured":"Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096\u20132130","journal-title":"J Mach Learn Res"},{"key":"1_CR82","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1016\/j.neucom.2018.05.083","volume":"312","author":"Mei Wang","year":"2018","unstructured":"Wang M, Deng W (2018) Deep visual domain adaptation: a survey. Neurocomputing 312:135\u2013153","journal-title":"Neurocomputing"},{"key":"1_CR83","unstructured":"Xie M, Jean N, Burke M, Lobell D, Ermon S (2015) Transfer learning from deep features for remote sensing and poverty mapping. arXiv:1510.00098"},{"key":"1_CR84","unstructured":"Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016) Progressive neural networks. arXiv:1606.04671"},{"key":"1_CR85","doi-asserted-by":"crossref","unstructured":"Csurka G (2017) Domain adaptation for visual applications: a comprehensive survey. arXiv:1702.05374","DOI":"10.1007\/978-3-319-58347-1_1"},{"issue":"3","key":"1_CR86","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1109\/MSP.2014.2347059","volume":"32","author":"VM Patel","year":"2015","unstructured":"Patel VM, Gopalan R, Li R, Chellappa R (2015) Visual domain adaptation: a survey of recent advances. IEEE Signal Process Mag 32(3):53\u201369","journal-title":"IEEE Signal Process Mag"},{"issue":"5","key":"1_CR87","doi-asserted-by":"publisher","first-page":"1019","DOI":"10.1109\/TNNLS.2014.2330900","volume":"26","author":"L Shao","year":"2015","unstructured":"Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst 26(5):1019\u20131034","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"1_CR88","unstructured":"Zhang J, Li W, Ogunbona P (2017) Transfer learning for cross-dataset recognition: a survey. arXiv:1705.04396"},{"key":"1_CR89","unstructured":"Zhang L (2019) Transfer adaptation learning: a decade survey. arXiv:1903.04687"},{"issue":"3","key":"1_CR90","first-page":"129","volume":"31","author":"J Heckman","year":"2013","unstructured":"Heckman J et al (2013) Sample selection bias as a specification error. Appl Econ 31(3):129\u2013137","journal-title":"Appl Econ"},{"key":"1_CR91","doi-asserted-by":"crossref","unstructured":"Zadrozny B (2004) Learning and evaluating classifiers under sample selection bias. In: International conference on machine learning, p 114\u2013122","DOI":"10.1145\/1015330.1015425"},{"key":"1_CR92","unstructured":"Jiang J (2008) Domain adaptation in natural language processing. Technical report"},{"issue":"1","key":"1_CR93","doi-asserted-by":"publisher","first-page":"210","DOI":"10.1109\/TSMCB.2007.908870","volume":"38","author":"H Zhao","year":"2008","unstructured":"Zhao H, Yuen PC (2008) Incremental linear discriminant analysis for face recognition. IEEE Trans Syst Man Cybern Part B (Cybernetics) 38(1):210\u2013221","journal-title":"IEEE Trans Syst Man Cybern Part B (Cybernetics)"},{"key":"1_CR94","doi-asserted-by":"crossref","unstructured":"Liu LP, Jiang Y, Zhou ZH (2009) Least square incremental linear discriminant analysis. In: IEEE international conference on data mining, pp 298\u2013306","DOI":"10.1109\/ICDM.2009.78"},{"key":"1_CR95","doi-asserted-by":"crossref","unstructured":"Xiao T, Zhang J, Yang K, Peng Y, Zhang Z (2014) Error-driven incremental learning in deep convolutional neural network for large-scale image classification. In: ACM international conference on multimedia, pp 177\u2013186","DOI":"10.1145\/2647868.2654926"},{"issue":"13","key":"1_CR96","doi-asserted-by":"publisher","first-page":"3521","DOI":"10.1073\/pnas.1611835114","volume":"114","author":"James Kirkpatrick","year":"2017","unstructured":"Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A et\u00a0al (2017) Overcoming catastrophic forgetting in neural networks. In: Proceedings of the national academy of sciences, vol 114(13), pp 3521\u20133526","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"1_CR97","doi-asserted-by":"crossref","unstructured":"Bhatt HS, Bharadwaj S, Singh R, Vatsa M, Noore A, Ross A (2011) On co-training online biometric classifiers. In: International joint conference on biometrics, pp 1\u20137","DOI":"10.1109\/IJCB.2011.6117519"},{"key":"1_CR98","doi-asserted-by":"crossref","unstructured":"Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Annual conference on computational learning theory, pp 92\u2013100","DOI":"10.1145\/279943.279962"}],"container-title":["Domain Adaptation for Visual Understanding"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-30671-7_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,10]],"date-time":"2022-10-10T07:09:52Z","timestamp":1665385792000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-30671-7_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030306700","9783030306717"],"references-count":98,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-30671-7_1","relation":{},"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"9 January 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}