{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T03:49:38Z","timestamp":1743133778654,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030306182"},{"type":"electronic","value":"9783030306199"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-30619-9_16","type":"book-chapter","created":{"date-parts":[[2019,9,11]],"date-time":"2019-09-11T06:51:47Z","timestamp":1568184707000},"page":"224-238","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Content Recognition of Network Traffic Using Wavelet Transform and CNN"],"prefix":"10.1007","author":[{"given":"Yu","family":"Liang","sequence":"first","affiliation":[]},{"given":"Yi","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Xingrui","family":"Fei","sequence":"additional","affiliation":[]},{"given":"Xincheng","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Haishou","family":"Ma","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,9,9]]},"reference":[{"issue":"5","key":"16_CR1","doi-asserted-by":"publisher","first-page":"1021","DOI":"10.1016\/j.jcss.2014.02.008","volume":"80","author":"Y Wang","year":"2014","unstructured":"Wang, Y., Xiang, Y., Zhang, J., Zhou, W., Xie, B.: Internet traffic clustering with side information. J. Comput. Syst. Sci. 80(5), 1021\u20131036 (2014)","journal-title":"J. Comput. Syst. Sci."},{"key":"16_CR2","doi-asserted-by":"crossref","unstructured":"Ertam, F., Avci, E.: Classification with intelligent systems for internet traffic in enterprise networks. Int. J. Comput. Commun. Instrum. Engg. (IJCCIE) 3 (2016). ISSN 2349-1469","DOI":"10.15242\/IJCCIE.IAE0116008"},{"issue":"6","key":"16_CR3","doi-asserted-by":"publisher","first-page":"1880","DOI":"10.1109\/TNET.2012.2187305","volume":"20","author":"TTT Nguyen","year":"2012","unstructured":"Nguyen, T.T.T., Armitage, G., Branch, P., Zander, S.: Timely and continuous machine-learning-based classification for interactive IP traffic. IEEE\/ACM Trans. Network. 20(6), 1880\u20131894 (2012)","journal-title":"IEEE\/ACM Trans. Network."},{"issue":"5","key":"16_CR4","doi-asserted-by":"publisher","first-page":"961","DOI":"10.1109\/18.57199","volume":"36","author":"I Daubechies","year":"1990","unstructured":"Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961\u20131005 (1990)","journal-title":"IEEE Trans. Inf. Theory"},{"key":"16_CR5","unstructured":"Qian, K., Ren, Z., Pandit, V., Yang, Z., Zhang, Z., Schuller, B.: Wavelets revisited for the classification of acoustic scenes. In: Proceedings of the DCASE Workshop, Munich, Germany, pp. 108\u2013112 (2017)"},{"issue":"1","key":"16_CR6","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1109\/TBME.2010.2077291","volume":"58","author":"RN Khushaba","year":"2011","unstructured":"Khushaba, R.N., Kodagoda, S., Lal, S., Dissanayake, G.: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58(1), 121\u2013131 (2011)","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"16_CR7","doi-asserted-by":"publisher","first-page":"920","DOI":"10.1016\/j.compeleceng.2018.03.005","volume":"69","author":"G Sun","year":"2018","unstructured":"Sun, G., Liang, L., Chen, T., Xiao, F., Lang, F.: Network traffic classification based on transfer learning. Comput. Electr. Eng. 69, 920\u2013927 (2018)","journal-title":"Comput. Electr. Eng."},{"key":"16_CR8","doi-asserted-by":"crossref","unstructured":"Moore, A.W., Zuev, D.: Internet traffic classification using Bayesian analysis techniques. In: ACM SIGMETRICS Performance Evaluation Review, Vol. 33, pp. 50\u201360. ACM (2005)","DOI":"10.1145\/1071690.1064220"},{"key":"16_CR9","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1016\/j.comnet.2014.11.001","volume":"76","author":"T Bujlow","year":"2015","unstructured":"Bujlow, T., Carela-Espa\u00f1ol, V., Barlet-Ros, P.: Independent comparison of popular DPI tools for traffic classification. Comput. Netw. 76, 75\u201389 (2015)","journal-title":"Comput. Netw."},{"key":"16_CR10","doi-asserted-by":"crossref","unstructured":"Bujlow, T., Riaz, T., Pedersen, J.M.: Classification of HTTP traffic based on C5.0 machine learning algorithm. In: 2012 IEEE Symposium on Computers and Communications (ISCC), pp. 000882\u2013000887. IEEE (2012)","DOI":"10.1109\/ISCC.2012.6249413"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Wang, Y., Zhang, Z., Guo, L.: Traffic classification beyond application level: identifying content types from network traces. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 540\u2013541. ACM (2011)","DOI":"10.1145\/1982185.1982301"},{"key":"16_CR12","doi-asserted-by":"crossref","unstructured":"Wang, Y., An, J., Huang, W.: Using CNN-based representation learning method for malicious traffic identification. In: 2018 IEEE\/ACIS 17th International Conference on Computer and Information Science (ICIS), pp. 400\u2013404. IEEE (2018)","DOI":"10.1109\/ICIS.2018.8466404"},{"key":"16_CR13","unstructured":"Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), pp. 856\u2013863 (2003)"},{"issue":"4","key":"16_CR14","doi-asserted-by":"publisher","first-page":"1257","DOI":"10.1109\/TNET.2014.2320577","volume":"23","author":"J Zhang","year":"2015","unstructured":"Zhang, J., Chen, X., Xiang, Y., Zhou, W., Jie, W.: Robust network traffic classification. IEEE\/ACM Trans. Netw. (TON) 23(4), 1257\u20131270 (2015)","journal-title":"IEEE\/ACM Trans. Netw. (TON)"},{"key":"16_CR15","doi-asserted-by":"publisher","first-page":"322","DOI":"10.1016\/j.neucom.2014.10.061","volume":"152","author":"D Li","year":"2015","unstructured":"Li, D., Guyu, H., Wang, Y., Pan, Z.: Network traffic classification via non-convex multi-task feature learning. Neurocomputing 152, 322\u2013332 (2015)","journal-title":"Neurocomputing"},{"issue":"5","key":"16_CR16","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1016\/j.jcss.2012.11.004","volume":"79","author":"J Zhang","year":"2013","unstructured":"Zhang, J., Xiang, Y., Zhou, W., Wang, Y.: Unsupervised traffic classification using flow statistical properties and IP packet payload. J. Comput. Syst. Sci. 79(5), 573\u2013585 (2013)","journal-title":"J. Comput. Syst. Sci."},{"issue":"11","key":"16_CR17","doi-asserted-by":"publisher","first-page":"2932","DOI":"10.1109\/TPDS.2013.307","volume":"25","author":"Y Wang","year":"2014","unstructured":"Wang, Y., Xiang, Y., Zhang, J., Zhou, W., Wei, G., Yang, L.T.: Internet traffic classification using constrained clustering. IEEE Trans. Parallel Distrib. Syst. 25(11), 2932\u20132943 (2014)","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"16_CR18","doi-asserted-by":"crossref","unstructured":"Kumar, A., Kim, J., Suh, S.C., Choi, G.: Incorporating multiple cluster models for network traffic classification. In: 2015 IEEE 40th Conference on Local Computer Networks (LCN), pp. 185\u2013188. IEEE (2015)","DOI":"10.1109\/LCN.2015.7366302"},{"key":"16_CR19","unstructured":"Zhang, J., Xiang, Y., Wang, Yu., Zhou, W., Xiang, Y., Guan, Y.: Network traffic classification using correlation information. IEEE Trans. Parallel Distrib. Syst. 24(1), 104\u2013117 (2013)"},{"key":"16_CR20","doi-asserted-by":"publisher","first-page":"81","DOI":"10.1016\/j.comnet.2018.01.007","volume":"132","author":"H Shi","year":"2018","unstructured":"Shi, H., Li, H., Zhang, D., Cheng, C., Cao, X.: An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification. Comput. Netw. 132, 81\u201398 (2018)","journal-title":"Comput. Netw."},{"key":"16_CR21","unstructured":"Lotfollahi, M., Zade, R.S.H., Siavoshani, M.J., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. arXiv preprint \narXiv:1709.02656\n\n (2017)"},{"key":"16_CR22","doi-asserted-by":"publisher","first-page":"18042","DOI":"10.1109\/ACCESS.2017.2747560","volume":"5","author":"M Lopez-Martin","year":"2017","unstructured":"Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic classifier with convolutional and recurrent neural networks for internet of things. IEEE Access 5, 18042\u201318050 (2017)","journal-title":"IEEE Access"},{"key":"16_CR23","doi-asserted-by":"crossref","unstructured":"Aceto, G., Ciuonzo, D., Montieri, A., Pescap\u00e9, A.: Mobile encrypted traffic classification using deep learning. In: 2018 Network Traffic Measurement and Analysis Conference (TMA), pp. 1\u20138. IEEE (2018)","DOI":"10.23919\/TMA.2018.8506558"},{"issue":"1","key":"16_CR24","doi-asserted-by":"publisher","first-page":"159","DOI":"10.2307\/2529310","volume":"33","author":"JR Landis","year":"1977","unstructured":"Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159\u2013174 (1977)","journal-title":"Biometrics"}],"container-title":["Lecture Notes in Computer Science","Machine Learning for Cyber Security"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-30619-9_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,3,17]],"date-time":"2020-03-17T00:07:50Z","timestamp":1584403670000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-30619-9_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030306182","9783030306199"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-30619-9_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"9 September 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ML4CS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Machine Learning for Cyber Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Xi'an","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ml4cs2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/ml4cs2019.xidian.edu.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"70","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"23","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}