{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T00:58:35Z","timestamp":1740099515754,"version":"3.37.3"},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030304867"},{"type":"electronic","value":"9783030304874"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-30487-4_52","type":"book-chapter","created":{"date-parts":[[2019,9,8]],"date-time":"2019-09-08T19:02:47Z","timestamp":1567969367000},"page":"685-697","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Benchmarking Incremental Regressors in Traversal Cost Assessment"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8213-893X","authenticated-orcid":false,"given":"Milo\u0161","family":"Pr\u00e1gr","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6193-0792","authenticated-orcid":false,"given":"Jan","family":"Faigl","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,9,9]]},"reference":[{"key":"52_CR1","doi-asserted-by":"publisher","unstructured":"Bartoszyk, S., Kasprzak, P., Belter, D.: Terrain-aware motion planning for a walking robot. In: International Workshop on Robot Motion and Control (RoMoCo), IEEE, pp. 29\u201334 (2017). \n https:\/\/doi.org\/10.1109\/RoMoCo.2017.8003889","DOI":"10.1109\/RoMoCo.2017.8003889"},{"key":"52_CR2","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1007\/978-3-662-44440-5_3","volume-title":"Communications in Computer and Information Science","author":"Michael Brunner","year":"2014","unstructured":"Brunner, M., Br\u00fcggemann, B., Schulz, D.: Rough Terrain Motion Planning for Actuated, Tracked Robots. In: International Conference on Agents and Artificial Intelligence (ICAART), pp. 40\u201361 (2013). \n https:\/\/doi.org\/10.1007\/978-3-662-44440-5_3"},{"key":"52_CR3","unstructured":"Deisenroth, M.P., Ng, J.W.: Distributed Gaussian processes. In: International Conference on International Conference on Machine Learning (ICML), pp. 1481\u20131490 (2015)"},{"key":"52_CR4","doi-asserted-by":"publisher","first-page":"166","DOI":"10.1007\/978-3-030-19642-4_17","volume-title":"Advances in Intelligent Systems and Computing","author":"Jan Faigl","year":"2019","unstructured":"Faigl, J., Pr\u00e1gr, M.: Incremental traversability assessment learning using growing neural gas algorithm. In: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, pp. 166\u2013176 (2020). \n https:\/\/doi.org\/10.1007\/978-3-030-19642-4_17"},{"key":"52_CR5","unstructured":"Fritzke, B.: A growing neural gas network learns topologies. In: Neural Information Processing Systems (NIPS), pp. 625\u2013632 (1994)"},{"key":"52_CR6","unstructured":"GPy: A Gaussian process framework in Python (2012). \n http:\/\/github.com\/SheffieldML\/GPy\n \n . Accessed 28 Mar 2019"},{"key":"52_CR7","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1007\/978-3-319-20904-3_18","volume-title":"Lecture Notes in Computer Science","author":"Mikkel Kragh","year":"2015","unstructured":"Kragh, M., J\u00f8rgensen, R.N., Pedersen, H.: Object detection and terrain classification in agricultural fields using 3D lidar data. In: International Conference on Computer Vision Systems (ICVS), vol. 9163, pp. 188\u2013197 (2015). \n https:\/\/doi.org\/10.1007\/978-3-319-20904-3_18"},{"key":"52_CR8","unstructured":"LWPR library (2007). \n https:\/\/github.com\/jdlangs\/lwpr\n \n . Accessed 28 May 2019"},{"issue":"4","key":"52_CR9","doi-asserted-by":"publisher","first-page":"428","DOI":"10.1108\/IR-11-2016-0340","volume":"44","author":"MR Nowicki","year":"2017","unstructured":"Nowicki, M.R., Belter, D., Kostusiak, A., \u010c\u00ed\u017eek, P., Faigl, J., Skrzypczynski, P.: An experimental study on feature-based SLAM for multi-legged robots with RGB-D sensors. Ind. Robot 44(4), 428\u2013441 (2017). \n https:\/\/doi.org\/10.1108\/IR-11-2016-0340","journal-title":"Ind. Robot"},{"key":"52_CR10","doi-asserted-by":"publisher","unstructured":"O\u2019Callaghan, S., Ramos, F.T., Durrant-Whyte, H.: Contextual occupancy maps using Gaussian processes. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1054\u20131060 (2009). \n https:\/\/doi.org\/10.1109\/ROBOT.2009.5152754","DOI":"10.1109\/ROBOT.2009.5152754"},{"issue":"10","key":"52_CR11","doi-asserted-by":"publisher","first-page":"e0139931","DOI":"10.1371\/journal.pone.0139931","volume":"10","author":"Rafael Coimbra Pinto","year":"2015","unstructured":"Pinto, R., Engel, P., Alegre, P.: A fast incremental Gaussian mixture model. PLoS ONE e0141942 (2015). \n https:\/\/doi.org\/10.1371\/journal.pone.0139931","journal-title":"PLOS ONE"},{"key":"52_CR12","doi-asserted-by":"publisher","unstructured":"Pr\u00e1gr, M., \u010c\u00ed\u017eek, P., Bayer, J., Faigl, J.: Online incremental learning of the terrain traversal cost in autonomous exploration. In: Robotics: Science and Systems (RSS) (2019). \n https:\/\/doi.org\/10.15607\/RSS.2019.XV.040","DOI":"10.15607\/RSS.2019.XV.040"},{"key":"52_CR13","doi-asserted-by":"publisher","unstructured":"Pr\u00e1gr, M., \u010c\u00ed\u017eek, P., Faigl, J.: Cost of transport estimation for legged robot based on terrain features inference from aerial scan. In: IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1745\u20131750 (2018). \n https:\/\/doi.org\/10.1109\/IROS.2018.8593374","DOI":"10.1109\/IROS.2018.8593374"},{"key":"52_CR14","doi-asserted-by":"publisher","first-page":"412","DOI":"10.1007\/978-3-030-14984-0_30","volume-title":"Modelling and Simulation for Autonomous Systems","author":"Milo\u0161 Pr\u00e1gr","year":"2019","unstructured":"Pr\u00e1gr, M., \u010c\u00ed\u017eek, P., Faigl, J.: Incremental learning of traversability cost for aerial reconnaissance support to ground units. In: Modelling and Simulation for Autonomous Systems (MESAS), pp. 412\u2013421 (2019). \n https:\/\/doi.org\/10.1007\/978-3-030-14984-0_30"},{"issue":"7","key":"52_CR15","doi-asserted-by":"publisher","first-page":"1061","DOI":"10.1007\/s00521-010-0428-y","volume":"20","author":"F Shen","year":"2011","unstructured":"Shen, F., Yu, H., Sakurai, K., Hasegawa, O.: An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network. Neural Comput. Appl. 20(7), 1061\u20131074 (2011). \n https:\/\/doi.org\/10.1007\/s00521-010-0428-y","journal-title":"Neural Comput. Appl."},{"issue":"11","key":"52_CR16","doi-asserted-by":"publisher","first-page":"2719","DOI":"10.1162\/089976600300014908","volume":"12","author":"V Tresp","year":"2000","unstructured":"Tresp, V.: A Bayesian committee machine. Neural Comput. 12(11), 2719\u20132741 (2000). \n https:\/\/doi.org\/10.1162\/089976600300014908","journal-title":"Neural Comput."},{"issue":"4","key":"52_CR17","first-page":"413","volume":"63","author":"VA Tucker","year":"1975","unstructured":"Tucker, V.A.: The energetic cost of moving about: walking and running are extremely inefficient forms of locomotion. Much greater efficiency is achieved by birds, fish-and bicyclists. Am. Sci. 63(4), 413\u2013419 (1975)","journal-title":"Am. Sci."},{"key":"52_CR18","unstructured":"Vijayakumar, S., Schaal, S.: Locally weighted projection regression: an O(n) algorithm for incremental real time learning in high dimensional space. In: International Conference on International Conference on Machine Learning (ICML), pp. 1079\u20131086 (2000)"},{"key":"52_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.neucom.2017.01.051","volume":"260","author":"Z Xiang","year":"2017","unstructured":"Xiang, Z., Xiao, Z., Wang, D., Xiao, J.: Gaussian kernel smooth regression with topology learning neural networks and Python implementation. Neurocomputing 260, 1\u20134 (2017). \n https:\/\/doi.org\/10.1016\/j.neucom.2017.01.051","journal-title":"Neurocomputing"},{"key":"52_CR20","doi-asserted-by":"publisher","unstructured":"\u010c\u00ed\u017eek, P., Masri, D., Faigl, J.: Foothold placement planning with a hexapod crawling robot. In: IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4096\u20134101 (2017). \n https:\/\/doi.org\/10.1109\/IROS.2017.8206267","DOI":"10.1109\/IROS.2017.8206267"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2019: Theoretical Neural Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-30487-4_52","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,8]],"date-time":"2019-09-08T19:15:35Z","timestamp":1567970135000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-30487-4_52"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030304867","9783030304874"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-30487-4_52","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"9 September 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}