{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:01:36Z","timestamp":1728176496508},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030304867"},{"type":"electronic","value":"9783030304874"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-30487-4_16","type":"book-chapter","created":{"date-parts":[[2019,9,8]],"date-time":"2019-09-08T23:02:47Z","timestamp":1567983767000},"page":"193-207","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":22,"title":["Squeezed Very Deep Convolutional Neural Networks for Text Classification"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7095-9469","authenticated-orcid":false,"given":"Andr\u00e9a B.","family":"Duque","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2159-4026","authenticated-orcid":false,"given":"Lu\u00e3 L\u00e1zaro J.","family":"Santos","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2527-4548","authenticated-orcid":false,"given":"David","family":"Mac\u00eado","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6421-9747","authenticated-orcid":false,"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,9,9]]},"reference":[{"key":"16_CR1","doi-asserted-by":"publisher","unstructured":"Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1251\u20131258 (2017). https:\/\/doi.org\/10.1109\/cvpr.2017.195","DOI":"10.1109\/cvpr.2017.195"},{"key":"16_CR2","doi-asserted-by":"publisher","unstructured":"Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for text classification. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Association for Computational Linguistics (2017). https:\/\/doi.org\/10.18653\/v1\/e17-1104","DOI":"10.18653\/v1\/e17-1104"},{"key":"16_CR3","unstructured":"Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014)"},{"key":"16_CR4","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778, June 2016. https:\/\/doi.org\/10.1109\/cvpr.2016.90","DOI":"10.1109\/cvpr.2016.90"},{"key":"16_CR5","unstructured":"Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)"},{"key":"16_CR6","doi-asserted-by":"publisher","unstructured":"Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, July 2017. https:\/\/doi.org\/10.1109\/cvpr.2017.243","DOI":"10.1109\/cvpr.2017.243"},{"key":"16_CR7","unstructured":"Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and $$<$$ 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)"},{"key":"16_CR8","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)"},{"key":"16_CR9","unstructured":"Kaiser, L., Gomez, A.N., Chollet, F.: Depthwise separable convolutions for neural machine translation. arXiv preprint arXiv:1706.03059 (2017)"},{"key":"16_CR10","doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)","DOI":"10.3115\/v1\/D14-1181"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)","DOI":"10.1609\/aaai.v29i1.9513"},{"key":"16_CR12","unstructured":"Le, H.T., Cerisara, C., Denis, A.: Do convolutional networks need to be deep for text classification? In: The Workshops of the Thirty-Second AAAI Conference on Artificial Intelligence (2017)"},{"issue":"11","key":"16_CR13","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y Lecun","year":"1998","unstructured":"Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278\u20132324 (1998). https:\/\/doi.org\/10.1109\/5.726791","journal-title":"Proc. IEEE"},{"key":"16_CR14","unstructured":"Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)"},{"key":"16_CR15","doi-asserted-by":"publisher","unstructured":"Santos, A.G., de Souza, C.O., Zanchettin, C., Macedo, D., Oliveira, A.L.I., Ludermir, T.: Reducing SqueezeNet storage size with depthwise separable convolutions. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2018. https:\/\/doi.org\/10.1109\/ijcnn.2018.8489442","DOI":"10.1109\/ijcnn.2018.8489442"},{"key":"16_CR16","unstructured":"Sifre, L., Mallat, S.: Rigid-motion scattering for image classification. Ph.D. thesis, Citeseer (2014)"},{"key":"16_CR17","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"issue":"3","key":"16_CR18","doi-asserted-by":"publisher","first-page":"517","DOI":"10.1109\/taslp.2015.2400218","volume":"23","author":"M Sundermeyer","year":"2015","unstructured":"Sundermeyer, M., Ney, H., Schluter, R.: From feedforward to recurrent LSTM neural networks for language modeling. IEEE\/ACM Trans. Audio Speech Lang. Process. 23(3), 517\u2013529 (2015). https:\/\/doi.org\/10.1109\/taslp.2015.2400218","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"key":"16_CR19","doi-asserted-by":"publisher","unstructured":"Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics (2015). https:\/\/doi.org\/10.3115\/v1\/p15-1150","DOI":"10.3115\/v1\/p15-1150"},{"key":"16_CR20","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998\u20136008 (2017)"},{"key":"16_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"818","DOI":"10.1007\/978-3-319-10590-1_53","volume-title":"Computer Vision \u2013 ECCV 2014","author":"MD Zeiler","year":"2014","unstructured":"Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818\u2013833. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10590-1_53"},{"key":"16_CR22","unstructured":"Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649\u2013657 (2015)"},{"key":"16_CR23","unstructured":"Zhou, C., Sun, C., Liu, Z., Lau, F.: A C-LSTM neural network for text classification. arXiv preprint arXiv:1511.08630 (2015)"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2019: Theoretical Neural Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-30487-4_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T21:33:19Z","timestamp":1664314399000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-30487-4_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030304867","9783030304874"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-30487-4_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"9 September 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}