{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:49:06Z","timestamp":1726408146487},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298906"},{"type":"electronic","value":"9783030298913"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29891-3_42","type":"book-chapter","created":{"date-parts":[[2019,8,22]],"date-time":"2019-08-22T23:12:33Z","timestamp":1566515553000},"page":"480-487","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Knee Osteoarthritis Detection Using Power Spectral Density: Data from the OsteoArthritis Initiative"],"prefix":"10.1007","author":[{"given":"Abdelbasset","family":"Brahim","sequence":"first","affiliation":[]},{"given":"Rabia","family":"Riad","sequence":"additional","affiliation":[]},{"given":"Rachid","family":"Jennane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,22]]},"reference":[{"issue":"4","key":"42_CR1","first-page":"376","volume":"6","author":"SR Goldring","year":"2006","unstructured":"Goldring, S.R., Goldring, M.B.: Clinical aspects, pathology and pathophysiology of osteoarthritis. J. Musculoskelet. Neuronal Interact. 6(4), 376\u2013378 (2006)","journal-title":"J. Musculoskelet. Neuronal Interact."},{"key":"42_CR2","unstructured":"Sellam, J., Herrero-Beaumont, G., Berenbaum, F.: Osteoarthritis: pathogenesis, clinical aspects and diagnosis. In: EULAR Compendium on Rheumatic Diseases, pp. 444\u2013463. BMJ Publishing Group LTD., Italy (2009)"},{"key":"42_CR3","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1111\/j.1749-6632.2009.05240.x","volume":"1192","author":"MB Goldring","year":"2010","unstructured":"Goldring, M.B., Goldring, S.R.: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N.Y. Acad. Sci. 1192, 230\u2013237 (2010)","journal-title":"Ann. N.Y. Acad. Sci."},{"issue":"4","key":"42_CR4","doi-asserted-by":"publisher","first-page":"400","DOI":"10.1002\/art.1780130406","volume":"13","author":"EL Radin","year":"1970","unstructured":"Radin, E.L., Paul, I.L., Tolkoff, M.J.: Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum. 13(4), 400\u2013405 (1970)","journal-title":"Arthritis Rheum."},{"issue":"4","key":"42_CR5","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1016\/j.joca.2013.01.002","volume":"21","author":"T Wang","year":"2013","unstructured":"Wang, T., Wen, C.Y., Yan, C.H., Lu, W.W., Chiu, K.Y.: Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis. Osteoarthr. Cartil. 21(4), 574\u2013581 (2013)","journal-title":"Osteoarthr. Cartil."},{"key":"42_CR6","doi-asserted-by":"publisher","first-page":"494","DOI":"10.1136\/ard.16.4.494","volume":"16","author":"JH Kellgren","year":"1957","unstructured":"Kellgren, J.H., Lawrence, J.S.: Radiologic assessment of osteoarthritis. Ann. Rheum. Dis. 16, 494\u2013501 (1957)","journal-title":"Ann. Rheum. Dis."},{"issue":"6","key":"42_CR7","first-page":"3379","volume":"24","author":"Y Wu","year":"2014","unstructured":"Wu, Y., Yang, R., Jia, S., Li, Z., Zhou, Z., Lou, T.: Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping. Biomed. Mater. Eng. 24(6), 3379\u20133388 (2014)","journal-title":"Biomed. Mater. Eng."},{"issue":"2","key":"42_CR8","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1109\/TBME.2008.2006025","volume":"56","author":"L Shamir","year":"2009","unstructured":"Shamir, L., et al.: Knee X-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 56(2), 407\u2013415 (2009)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"5","key":"42_CR9","doi-asserted-by":"publisher","first-page":"2030","DOI":"10.1118\/1.3373522","volume":"37","author":"T Woloszynski","year":"2010","unstructured":"Woloszynski, T., Podsiadlo, P., Stachowiak, G.W., Kurzynski, M.: A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med. Phys. 37(5), 2030\u20132042 (2010)","journal-title":"Med. Phys."},{"issue":"2","key":"42_CR10","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1016\/j.joca.2016.10.005","volume":"25","author":"T Janvier","year":"2017","unstructured":"Janvier, T., et al.: Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative Tibial bone texture & knee OA progression. Osteoarthr. Cartil. 25(2), 259\u2013266 (2017)","journal-title":"Osteoarthr. Cartil."},{"key":"42_CR11","doi-asserted-by":"publisher","first-page":"2047","DOI":"10.1016\/j.joca.2017.09.004","volume":"25","author":"T Janvier","year":"2017","unstructured":"Janvier, T., Jennane, R., Toumi, H., Lespessailles, E.: Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr. Cartil. 25, 2047\u20132054 (2017)","journal-title":"Osteoarthr. Cartil."},{"key":"42_CR12","doi-asserted-by":"publisher","first-page":"1307","DOI":"10.1016\/j.joca.2009.04.010","volume":"17","author":"L Shamir","year":"2009","unstructured":"Shamir, L., Ling, S.M., Scott, W., Hochbergk, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthr. Cartil. 17, 1307\u20131312 (2009)","journal-title":"Osteoarthr. Cartil."},{"key":"42_CR13","doi-asserted-by":"crossref","unstructured":"Antony, J., McGuinness, K., O\u2019Connor, N.E., Moran, K.: Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1195\u20131200, December 2016","DOI":"10.1109\/ICPR.2016.7899799"},{"key":"42_CR14","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1016\/j.bsbt.2016.11.004","volume":"2","author":"GW Stachowiak","year":"2016","unstructured":"Stachowiak, G.W., Wolskin, M., Woloszynski, T., Podsiadlo, P.: Detection and prediction of osteoarthritis in knee and hand joints based on the X-ray image analysis. Biosurf. Biotribol. 2, 162\u2013172 (2016)","journal-title":"Biosurf. Biotribol."},{"key":"42_CR15","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.medengphy.2017.02.004","volume":"43","author":"M Kotti","year":"2017","unstructured":"Kotti, M., Duffell, L.D., Faisal, A.A., McGregor, A.H.: Detecting knee osteoarthritis and its discriminating parameters using random forests. Med. Eng. Phys. 43, 19\u201329 (2017)","journal-title":"Med. Eng. Phys."},{"issue":"11","key":"42_CR16","doi-asserted-by":"publisher","first-page":"887","DOI":"10.1177\/0954411912456650","volume":"226","author":"T Woloszynski","year":"2012","unstructured":"Woloszynski, T., Podsiadlo, P., Stachowiak, G., Kurzynski, M.: A dissimilarity-based multiple classifier system for trabecular bone texture in detection and prediction of progression of knee osteoarthritis. Proc. Inst. Mech. Eng. H 226(11), 887\u2013894 (2012)","journal-title":"Proc. Inst. Mech. Eng. H"},{"issue":"4","key":"42_CR17","first-page":"313","volume":"8","author":"G Lester","year":"2008","unstructured":"Lester, G.: Clinical research in OA-the NIH Osteoarthritis Initiative. Musculoskelet. Neuronal Interact. 8(4), 313\u2013314 (2008)","journal-title":"Musculoskelet. Neuronal Interact."},{"key":"42_CR18","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1038\/nrrheum.2012.113","volume":"8","author":"F Eckstein","year":"2012","unstructured":"Eckstein, F., Wirth, W., Nevitt, M.C.: Recent advances in osteoarthritis imaging-the Osteoarthritis Initiative. Nat. Rev. Rheumatol. 8, 622\u2013630 (2012)","journal-title":"Nat. Rev. Rheumatol."},{"issue":"3","key":"42_CR19","doi-asserted-by":"publisher","first-page":"688","DOI":"10.1002\/art.33410","volume":"64","author":"T Woloszynski","year":"2012","unstructured":"Woloszynski, T., Podsiadlo, P., Stachowiak, G., Kurzynski, M., Lohmander, L., Englund, M.: Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture. Arthritis Rheum. 64(3), 688\u2013695 (2012)","journal-title":"Arthritis Rheum."},{"key":"42_CR20","doi-asserted-by":"publisher","first-page":"1724","DOI":"10.1016\/j.joca.2014.06.021","volume":"22","author":"J Hirvasniemi","year":"2014","unstructured":"Hirvasniemi, J., et al.: Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis. Osteoarthr. Cartil. 22, 1724\u20131731 (2014)","journal-title":"Osteoarthr. Cartil."},{"key":"42_CR21","volume-title":"Digital Image Processing","author":"RC Gonzalez","year":"2006","unstructured":"Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2006)","edition":"3"},{"issue":"4\u20135","key":"42_CR22","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1016\/S0893-6080(00)00026-5","volume":"13","author":"A Hyv\u00e4rinen","year":"2000","unstructured":"Hyv\u00e4rinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4\u20135), 411\u2013430 (2000)","journal-title":"Neural Netw."},{"issue":"3","key":"42_CR23","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1016\/j.compeleceng.2012.10.004","volume":"39","author":"CF Li","year":"2013","unstructured":"Li, C.F., Yin, J.Y.: Variational bayesian independent component analysis-support vector machine for remote sensing classification. Comput. Electr. Eng. 39(3), 717\u2013726 (2013)","journal-title":"Comput. Electr. Eng."},{"issue":"3","key":"42_CR24","doi-asserted-by":"publisher","first-page":"1650050","DOI":"10.1142\/S0129065716500507","volume":"27","author":"L Khedher","year":"2017","unstructured":"Khedher, L., Ill\u00e1n, I.A., G\u00f3rriz, J.M., Ram\u00edrez, J., Brahim, A., Meyer-Baese, A.: Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer\u2019s with visual support. Int. J. Neural Syst. 27(3), 1650050\u20131650068 (2017)","journal-title":"Int. J. Neural Syst."},{"key":"42_CR25","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1016\/j.asoc.2015.08.030","volume":"37","author":"A Brahim","year":"2015","unstructured":"Brahim, A., G\u00f3rriz, J., Ram\u00edrez, J., Khedher, L.: Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach. Appl. Soft Comput. 37, 234\u2013244 (2015)","journal-title":"Appl. Soft Comput."},{"issue":"8","key":"42_CR26","doi-asserted-by":"publisher","first-page":"646","DOI":"10.1046\/j.1525-1497.2002.10750.x","volume":"17","author":"S McGee","year":"2002","unstructured":"McGee, S.: Simplifying likelihood ratios. J. Gen. Intern. Med. 17(8), 646\u2013649 (2002)","journal-title":"J. Gen. Intern. Med."},{"issue":"7","key":"42_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pone.0135107","volume":"10","author":"A Brahim","year":"2015","unstructured":"Brahim, A., G\u00f3rriz, J., Ram\u00edrez, J., Khedher, L., Salas-Gonzalez, D.: Comparison between different intensity normalization methods in 123 I-ioflupane imaging for the Automatic Detection of Parkinsonism. Plos One 10(7), 1\u201320 (2015)","journal-title":"Plos One"},{"key":"42_CR28","doi-asserted-by":"crossref","unstructured":"Naderi, M.A., Mahdavi-Nasab, H.: Analysis and classification of EEG signals using spectral analysis and recurrent neural networks. In: 2010 17th Iranian Conference of Biomedical Engineering (ICBME) (2010)","DOI":"10.1109\/ICBME.2010.5704931"},{"issue":"1","key":"42_CR29","doi-asserted-by":"publisher","first-page":"090007","DOI":"10.1063\/1.4958525","volume":"1755","author":"D Kristomo","year":"2016","unstructured":"Kristomo, D., Hidayat, R., Soesanti, I., Kusjani, A.: Heart sound feature extraction and classification using autoregressive power spectral density (AR-PSD) and statistics features. AIP Conf. Proc. 1755(1), 090007 (2016)","journal-title":"AIP Conf. Proc."},{"key":"42_CR30","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1007\/s10044-012-0288-4","volume":"17","author":"L Houam","year":"2014","unstructured":"Houam, L., Hafiane, A., Boukrouche, A., Lespessailles, E., Jennane, R.: One dimensional local binary pattern for bone texture characterization. Pattern Anal. Appl. 17, 179\u2013193 (2014)","journal-title":"Pattern Anal. Appl."}],"container-title":["Lecture Notes in Computer Science","Computer Analysis of Images and Patterns"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29891-3_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,22]],"date-time":"2019-08-22T23:29:06Z","timestamp":1566516546000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-29891-3_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298906","9783030298913"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29891-3_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"22 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CAIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computer Analysis of Images and Patterns","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Salerno","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"caip2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/caip2019.unisa.it\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"176","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"106","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"60% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.68","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.40","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}