{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:15:35Z","timestamp":1726042535007},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298586"},{"type":"electronic","value":"9783030298593"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29859-3_62","type":"book-chapter","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T16:03:53Z","timestamp":1566835433000},"page":"734-744","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Texture Descriptors for Automatic Estimation of Workpiece Quality in Milling"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5152-4555","authenticated-orcid":false,"given":"Manuel","family":"Castej\u00f3n-Limas","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0760-1170","authenticated-orcid":false,"given":"Lidia","family":"S\u00e1nchez-Gonz\u00e1lez","sequence":"additional","affiliation":[]},{"given":"Javier","family":"D\u00edez-Gonz\u00e1lez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6573-8477","authenticated-orcid":false,"given":"Laura","family":"Fern\u00e1ndez-Robles","sequence":"additional","affiliation":[]},{"given":"Virginia","family":"Riego","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7112-1983","authenticated-orcid":false,"given":"Hilde","family":"P\u00e9rez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,26]]},"reference":[{"issue":"9\u201310","key":"62_CR1","doi-asserted-by":"publisher","first-page":"1513","DOI":"10.1016\/S0167-8655(02)00390-2","volume":"24","author":"S Arivazhagan","year":"2003","unstructured":"Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pattern Recogn. Lett. 24(9\u201310), 1513\u20131521 (2003)","journal-title":"Pattern Recogn. Lett."},{"issue":"5","key":"62_CR2","doi-asserted-by":"publisher","first-page":"1893","DOI":"10.1007\/s10845-011-0506-8","volume":"23","author":"A Bustillo","year":"2012","unstructured":"Bustillo, A., Correa, M.: Using artificial intelligence to predict surface roughness in deep drilling of steel components. J. Intell. Manufact. 23(5), 1893\u20131902 (2012). https:\/\/doi.org\/10.1007\/s10845-011-0506-8","journal-title":"J. Intell. Manufact."},{"issue":"6","key":"62_CR3","doi-asserted-by":"publisher","first-page":"1268","DOI":"10.1002\/pen.21647","volume":"50","author":"Miryam L. Chaves","year":"2010","unstructured":"Chaves, M.L., Viz\u00e1n, A., M\u00e1rquez, J.J., R\u00edos, J.: Inspection model and correlation functions to assist in the correction of qualitative defects of injected parts. Polym. Eng. Sci. 50(6), 1268\u20131279 (2010). https:\/\/doi.org\/10.1002\/pen.21647, https:\/\/onlinelibrary.wiley.com\/doi\/abs\/10.1002\/pen.21647","journal-title":"Polymer Engineering & Science"},{"key":"62_CR4","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1016\/j.precisioneng.2017.12.006","volume":"52","author":"Yiquan Dai","year":"2018","unstructured":"Dai, Y., Zhu, K.: A machine vision system for micro-milling tool condition monitoring. Precis. Eng. 52, 183\u2013191 (2018). https:\/\/doi.org\/10.1016\/j.precisioneng.2017.12.006, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0141635917302817","journal-title":"Precision Engineering"},{"key":"62_CR5","unstructured":"Dunwell Tech Inc.: Dinocapture 2.0: microscope imaging software (2019). https:\/\/www.dinolite.us\/dinocapture"},{"issue":"3","key":"62_CR6","doi-asserted-by":"publisher","first-page":"212","DOI":"10.1016\/j.cirpj.2013.02.005","volume":"6","author":"S. Dutta","year":"2013","unstructured":"Dutta, S., Pal, S., Mukhopadhyay, S., Sen, R.: Application of digital image processing in tool condition monitoring: a review. CIRP J. Manufact. Sci. Technol. 6(3), 212\u2013232 (2013). https:\/\/doi.org\/10.1016\/j.cirpj.2013.02.005, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S1755581713000072","journal-title":"CIRP Journal of Manufacturing Science and Technology"},{"issue":"6","key":"62_CR7","doi-asserted-by":"publisher","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","volume":"3","author":"R Haralick","year":"1973","unstructured":"Haralick, R., Shanmugan, K., Dinstein, I.: Texture features for image classification. IEEE Syst. Man Cybern. 3(6), 610\u2013621 (1973)","journal-title":"IEEE Syst. Man Cybern."},{"key":"62_CR8","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1016\/j.neucom.2015.05.134","volume":"181","author":"Huijun Hu","year":"2016","unstructured":"Hu, H., Liu, Y., Liu, M., Nie, L.: Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm. Neurocomputing 181, 86\u201395 (2016). https:\/\/doi.org\/10.1016\/j.neucom.2015.05.134, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0925231215018482. Big Data Driven Intelligent Transportation Systems","journal-title":"Neurocomputing"},{"key":"62_CR9","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1016\/j.measurement.2015.10.029","volume":"79","author":"Lihong Li","year":"2016","unstructured":"Li, L., An, Q.: An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis. Measurement 79, 44\u201352 (2016). https:\/\/doi.org\/10.1016\/j.measurement.2015.10.029, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0263224115005631","journal-title":"Measurement"},{"issue":"9","key":"62_CR10","doi-asserted-by":"publisher","first-page":"3132","DOI":"10.3390\/s18093132","volume":"18","author":"Luis L\u00f3pez-Estrada","year":"2018","unstructured":"L\u00f3pez-Estrada, L., Fajardo-Pruna, M., S\u00e1nchez-Gonz\u00e1lez, L., P\u00e9rez, H., Fern\u00e1ndez-Robles, L., Viz\u00e1n, A.: Design and implementation of a stereo vision system on an innovative 6DOF single-edge machining device for tool tip localization and path correction. Sensors 18(9) (2018). https:\/\/doi.org\/10.3390\/s18093132, http:\/\/www.mdpi.com\/1424-8220\/18\/9\/3132","journal-title":"Sensors"},{"issue":"4","key":"62_CR11","doi-asserted-by":"publisher","first-page":"1981","DOI":"10.1109\/TCE.2008.4711262","volume":"54","author":"GH Park","year":"2008","unstructured":"Park, G.H., Cho, H.H., Choi, M.R.: A contrast enhancement method using dynamic range separate histogram equalization. IEEE Trans. Consum. Electron. 54(4), 1981\u20131987 (2008)","journal-title":"IEEE Trans. Consum. Electron."},{"key":"62_CR12","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/j.precisioneng.2016.01.003","volume":"44","author":"Micha\u0142 Szyd\u0142owski","year":"2016","unstructured":"Szyd\u0142owski, M., Powa\u0142ka, B., Matuszak, M., Kochma\u0144ski, P.: Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance. Precis. Eng. 44, 236\u2013244 (2016). https:\/\/doi.org\/10.1016\/j.precisioneng.2016.01.003, http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0141635916000052","journal-title":"Precision Engineering"},{"key":"62_CR13","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1016\/B978-0-12-336156-1.50061-6","volume-title":"Graphics Gems","author":"Karel Zuiderveld","year":"1994","unstructured":"Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S. (ed.) Graphics Gems IV, pp. 474\u2013485. Academic Press Professional Inc., San Diego, CA, USA (1994). http:\/\/dl.acm.org\/citation.cfm?id=180895.180940"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29859-3_62","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:32:17Z","timestamp":1710268337000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-29859-3_62"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298586","9783030298593"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29859-3_62","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"134","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}