{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:14:49Z","timestamp":1726042489335},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298586"},{"type":"electronic","value":"9783030298593"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29859-3_6","type":"book-chapter","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T16:03:53Z","timestamp":1566835433000},"page":"61-72","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Dataset Weighting via Intrinsic Data Characteristics for Pairwise Statistical Comparisons in Classification"],"prefix":"10.1007","author":[{"given":"Jos\u00e9 A.","family":"S\u00e1ez","sequence":"first","affiliation":[]},{"given":"Pablo","family":"Villacorta","sequence":"additional","affiliation":[]},{"given":"Emilio","family":"Corchado","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,26]]},"reference":[{"key":"6_CR1","first-page":"1","volume":"18","author":"F Bach","year":"2017","unstructured":"Bach, F.: Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18, 1\u201353 (2017)","journal-title":"J. Mach. Learn. Res."},{"key":"6_CR2","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.inffus.2015.08.005","volume":"28","author":"G Bello-Orgaz","year":"2016","unstructured":"Bello-Orgaz, G., Jung, J., Camacho, D.: Social big data: recent achievements and new challenges. Inf. Fusion 28, 45\u201359 (2016)","journal-title":"Inf. Fusion"},{"key":"6_CR3","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"key":"6_CR4","unstructured":"Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http:\/\/archive.ics.uci.edu\/ml"},{"key":"6_CR5","doi-asserted-by":"publisher","first-page":"252","DOI":"10.1016\/j.eswa.2018.04.008","volume":"106","author":"S Jain","year":"2018","unstructured":"Jain, S., Shukla, S., Wadhvani, R.: Dynamic selection of normalization techniques using data complexity measures. Expert Syst. Appl. 106, 252\u2013262 (2018)","journal-title":"Expert Syst. Appl."},{"key":"6_CR6","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1016\/j.eswa.2019.03.024","volume":"128","author":"M Khalilpour Darzi","year":"2019","unstructured":"Khalilpour Darzi, M., Niaki, S., Khedmati, M.: Binary classification of imbalanced datasets: the case of coil challenge 2000. Expert Syst. Appl. 128, 169\u2013186 (2019)","journal-title":"Expert Syst. Appl."},{"key":"6_CR7","doi-asserted-by":"crossref","unstructured":"Kuncheva, L., Galar, M.: Theoretical and empirical criteria for the edited nearest neighbour classifier, vol. January, pp. 817\u2013822 (2016)","DOI":"10.1109\/ICDM.2015.36"},{"key":"6_CR8","volume-title":"Data Mining and Predictive Analytics","author":"DT Larose","year":"2015","unstructured":"Larose, D.T., Larose, C.D.: Data Mining and Predictive Analytics, 2nd edn. Wiley Publishing, Hoboken (2015)","edition":"2"},{"issue":"3","key":"6_CR9","doi-asserted-by":"publisher","first-page":"406","DOI":"10.1016\/j.neunet.2009.11.014","volume":"23","author":"J Luengo","year":"2010","unstructured":"Luengo, J., Garc\u00eda, S., Herrera, F.: A study on the use of imputation methods for experimentation with radial basis function network classifiers handling missing attribute values: the good synergy between RBFs and eventcovering method. Neural Networks 23(3), 406\u2013418 (2010)","journal-title":"Neural Networks"},{"key":"6_CR10","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1007\/s10462-010-9156-z","volume":"33","author":"D Nettleton","year":"2010","unstructured":"Nettleton, D., Orriols-Puig, A., Fornells, A.: A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 33, 275\u2013306 (2010)","journal-title":"Artif. Intell. Rev."},{"key":"6_CR11","doi-asserted-by":"publisher","first-page":"680","DOI":"10.1080\/01621459.1979.10481670","volume":"74","author":"D Quade","year":"1979","unstructured":"Quade, D.: Using weighted rankings in the analysis of complete blocks with additive block effects. J. Am. Stat. Assoc. 74, 680\u2013683 (1979)","journal-title":"J. Am. Stat. Assoc."},{"key":"6_CR12","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.inffus.2015.04.002","volume":"27","author":"JA S\u00e1ez","year":"2016","unstructured":"S\u00e1ez, J.A., Galar, M., Luengo, J., Herrera, F.: INFFC: an iterative class noise filter based on the fusion of classifiers with noise sensitivity control. Inf. Fusion 27, 19\u201332 (2016)","journal-title":"Inf. Fusion"},{"issue":"1","key":"6_CR13","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1016\/j.patcog.2012.07.009","volume":"46","author":"JA S\u00e1ez","year":"2013","unstructured":"S\u00e1ez, J.A., Luengo, J., Herrera, F.: Predicting noise filtering efficacy with data complexity measures for nearest neighbor classification. Pattern Recogn. 46(1), 355\u2013364 (2013)","journal-title":"Pattern Recogn."},{"issue":"4","key":"6_CR14","doi-asserted-by":"publisher","first-page":"467","DOI":"10.1007\/s10462-015-9433-y","volume":"44","author":"G Santafe","year":"2015","unstructured":"Santafe, G., Inza, I., Lozano, J.: Dealing with the evaluation of supervised classification algorithms. Artif. Intell. Rev. 44(4), 467\u2013508 (2015)","journal-title":"Artif. Intell. Rev."},{"issue":"5","key":"6_CR15","doi-asserted-by":"publisher","first-page":"410","DOI":"10.1504\/IJCSM.2016.080073","volume":"7","author":"P Singh","year":"2016","unstructured":"Singh, P., Sarkar, R., Nasipuri, M.: Significance of non-parametric statistical tests for comparison of classifiers over multiple datasets. Int. J. Comput. Sci. Math. 7(5), 410\u2013442 (2016)","journal-title":"Int. J. Comput. Sci. Math."},{"key":"6_CR16","volume-title":"Statistical Learning Theory","author":"V Vapnik","year":"1998","unstructured":"Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)"},{"issue":"1","key":"6_CR17","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"DH Wolpert","year":"1997","unstructured":"Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67\u201382 (1997)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"6_CR18","volume-title":"Biostatistical Analysis","author":"J Zar","year":"2009","unstructured":"Zar, J.: Biostatistical Analysis. Prentice Hall, Upper Saddle River (2009)"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29859-3_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:08:35Z","timestamp":1710266915000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-29859-3_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298586","9783030298593"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29859-3_6","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"134","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}