{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:15:31Z","timestamp":1726042531964},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298586"},{"type":"electronic","value":"9783030298593"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29859-3_51","type":"book-chapter","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T16:03:53Z","timestamp":1566835433000},"page":"602-613","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Deep CNN-Based Recognition of JSL Finger Spelling"],"prefix":"10.1007","author":[{"given":"Nam Tu","family":"Nguen","sequence":"first","affiliation":[]},{"given":"Shinji","family":"Sako","sequence":"additional","affiliation":[]},{"given":"Bogdan","family":"Kwolek","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,26]]},"reference":[{"issue":"2","key":"51_CR1","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1007\/s10055-016-0301-0","volume":"21","author":"M Sagayam","year":"2017","unstructured":"Sagayam, M., Hemanth, J.: Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality 21(2), 91\u2013107 (2017)","journal-title":"Virtual Reality"},{"issue":"4","key":"51_CR2","doi-asserted-by":"publisher","first-page":"48","DOI":"10.5772\/60044","volume":"12","author":"F Chen","year":"2015","unstructured":"Chen, F., Zhong, Q., Cannella, F., Sekiyama, K., Fukuda, T.: Hand gesture modeling and recognition for human and robot interactive assembly using Hidden Markov Models. Int. J. Adv. Rob. Syst. 12(4), 48 (2015)","journal-title":"Int. J. Adv. Rob. Syst."},{"key":"51_CR3","unstructured":"Raj, M.D., Gogul, I., Thangaraja, M., Kumar, V.: Static gesture recognition based precise positioning of 5-DOF robotic arm using FPGA. In: Trends in Industrial Measurement and Automation (TIMA), pp. 1\u20136 (2017)"},{"key":"51_CR4","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1016\/j.ergon.2017.02.004","volume":"68","author":"H Liu","year":"2018","unstructured":"Liu, H., Wang, L.: Gesture recognition for human-robot collaboration: a review. Int. J. Ind. Ergon. 68, 355\u2013367 (2018)","journal-title":"Int. J. Ind. Ergon."},{"key":"51_CR5","unstructured":"Patil, S., et al.: GesturePod: programmable gesture recognition for augmenting assistive devices, Technical report, Microsoft, May 2018"},{"issue":"1","key":"51_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10462-012-9356-9","volume":"43","author":"S Rautaray","year":"2015","unstructured":"Rautaray, S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1\u201354 (2015)","journal-title":"Artif. Intell. Rev."},{"issue":"21","key":"51_CR7","doi-asserted-by":"publisher","first-page":"28121","DOI":"10.1007\/s11042-018-5971-z","volume":"77","author":"AS Al-Shamayleh","year":"2018","unstructured":"Al-Shamayleh, A.S., Ahmad, R., Abushariah, M., Alam, K.A., Jomhari, N.: A systematic literature review on vision based gesture recognition techniques. Multimedia Tools Appl. 77(21), 28121\u201328184 (2018)","journal-title":"Multimedia Tools Appl."},{"issue":"6","key":"51_CR8","doi-asserted-by":"publisher","first-page":"2368","DOI":"10.1109\/TITS.2014.2337331","volume":"15","author":"E Ohn-Bar","year":"2014","unstructured":"Ohn-Bar, E., Trivedi, M.: Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 15(6), 2368\u20132377 (2014)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"51_CR9","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1016\/j.cviu.2015.08.004","volume":"141","author":"P Pisharady","year":"2015","unstructured":"Pisharady, P., Saerbeck, M.: Recent methods and databases in vision-based hand gesture recognition. Comput. Vis. Image Underst. 141, 152\u2013165 (2015)","journal-title":"Comput. Vis. Image Underst."},{"key":"51_CR10","doi-asserted-by":"crossref","unstructured":"Oyedotun, O., Khashman, A.: Deep learning in vision-based static hand gesture recognition. Neural Comput. Appl., 1\u201311 (2016)","DOI":"10.1007\/s00521-016-2294-8"},{"issue":"5","key":"51_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2629500","volume":"33","author":"Jonathan Tompson","year":"2014","unstructured":"Tompson, J., Stein, M., LeCun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. 33(5) (2014)","journal-title":"ACM Transactions on Graphics"},{"key":"51_CR12","doi-asserted-by":"crossref","unstructured":"Nagi, J., Ducatelle, F., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: IEEE ICSIP, pp. 342\u2013347 (2011)","DOI":"10.1109\/ICSIPA.2011.6144164"},{"key":"51_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1007\/978-3-319-11179-7_51","volume-title":"Artificial Neural Networks and Machine Learning \u2013 ICANN 2014","author":"P Barros","year":"2014","unstructured":"Barros, P., Magg, S., Weber, C., Wermter, S.: A multichannel convolutional neural network for hand posture recognition. In: Wermter, S., et al. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 403\u2013410. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-11179-7_51"},{"key":"51_CR14","doi-asserted-by":"crossref","unstructured":"Koller, O., Ney, H., Bowden, R.: Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3793\u20133802 (2016)","DOI":"10.1109\/CVPR.2016.412"},{"key":"51_CR15","unstructured":"Tabata, Y., Kuroda, T.: Finger spelling recognition using distinctive features of hand shape. In: International Conference on Disability, Virtual Reality and Associated Technologies with Art Abilitation, pp. 287\u2013292 (2008)"},{"key":"51_CR16","doi-asserted-by":"publisher","first-page":"138","DOI":"10.1016\/j.cviu.2015.08.001","volume":"141","author":"L Kane","year":"2015","unstructured":"Kane, L., Khanna, P.: A framework for live and cross platform fingerspelling recognition using modified shape matrix variants on depth silhouettes. Comput. Vis. Image Underst. 141, 138\u2013151 (2015)","journal-title":"Comput. Vis. Image Underst."},{"key":"51_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/978-3-319-70353-4_20","volume-title":"Advanced Concepts for Intelligent Vision Systems","author":"B Kwolek","year":"2017","unstructured":"Kwolek, B., Sako, S.: Learning siamese features for finger spelling recognition. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 225\u2013236. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-70353-4_20"},{"key":"51_CR18","doi-asserted-by":"crossref","unstructured":"Rosalina, L.Y., Hadisukmana, N., Wahyu, R.B., Roestam, R., Wahyu, Y.: Implementation of real-time static hand gesture recognition using artificial neural network. In: CAIPT, pp. 1\u20136 (2017)","DOI":"10.1109\/CAIPT.2017.8320692"},{"key":"51_CR19","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.cviu.2017.05.009","volume":"161","author":"M Asad","year":"2017","unstructured":"Asad, M., Slabaugh, G.: SPORE: staged probabilistic regression for hand orientation inference. Comput. Vis. Image Underst. 161, 114\u2013129 (2017)","journal-title":"Comput. Vis. Image Underst."},{"key":"51_CR20","doi-asserted-by":"crossref","unstructured":"Dawod, A.Y., Nordin, M.J., Abdullah, J.: Static fingerspelling recognition based on boundary tracing algorithm and chain code. In: International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, pp. 104\u2013109. ACM (2018)","DOI":"10.1145\/3206185.3206195"},{"key":"51_CR21","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"51_CR22","doi-asserted-by":"crossref","unstructured":"Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. In: Interspeech, ISCA, pp. 22\u201326 (2018)","DOI":"10.21437\/Interspeech.2018-1898"},{"issue":"3","key":"51_CR23","doi-asserted-by":"publisher","first-page":"949","DOI":"10.1007\/s11063-017-9716-1","volume":"47","author":"CA Popa","year":"2018","unstructured":"Popa, C.A.: Learning algorithms for quaternion-valued neural networks. Neural Process. Lett. 47(3), 949\u2013973 (2018)","journal-title":"Neural Process. Lett."},{"key":"51_CR24","unstructured":"Nitta, T.: A quaternary version of the back-propagation algorithm. In: Proceedings of International Conference on Neural Networks, vol. 5, pp. 2753\u20132756 (1995)"},{"key":"51_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"645","DOI":"10.1007\/978-3-030-01237-3_39","volume-title":"Computer Vision \u2013 ECCV 2018","author":"X Zhu","year":"2018","unstructured":"Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 645\u2013661. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01237-3_39"},{"issue":"1","key":"51_CR26","first-page":"169","volume":"11","author":"D Opitz","year":"1999","unstructured":"Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Int. Res. 11(1), 169\u2013198 (1999)","journal-title":"J. Artif. Int. Res."}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29859-3_51","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:30:44Z","timestamp":1710268244000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-29859-3_51"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298586","9783030298593"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29859-3_51","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"134","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}