{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:15:19Z","timestamp":1726042519147},"publisher-location":"Cham","reference-count":43,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298586"},{"type":"electronic","value":"9783030298593"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29859-3_40","type":"book-chapter","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T16:03:53Z","timestamp":1566835433000},"page":"468-479","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Network Traffic Analysis for Android Malware Detection"],"prefix":"10.1007","author":[{"given":"Jos\u00e9 Gaviria","family":"de la Puerta","sequence":"first","affiliation":[]},{"given":"Iker","family":"Pastor-L\u00f3pez","sequence":"additional","affiliation":[]},{"given":"Borja","family":"Sanz","sequence":"additional","affiliation":[]},{"given":"Pablo G.","family":"Bringas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,26]]},"reference":[{"issue":"6","key":"40_CR1","doi-asserted-by":"publisher","first-page":"783","DOI":"10.1016\/S0893-6080(99)00032-5","volume":"12","author":"SI Amari","year":"1999","unstructured":"Amari, S.I., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12(6), 783\u2013789 (1999)","journal-title":"Neural Netw."},{"issue":"2","key":"40_CR2","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1145\/1129582.1129589","volume":"36","author":"L Bernaille","year":"2006","unstructured":"Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic classification on the fly. ACM SIGCOMM Comput. Commun. Rev. 36(2), 23\u201326 (2006)","journal-title":"ACM SIGCOMM Comput. Commun. Rev."},{"key":"40_CR3","volume-title":"Pattern Recognition and Machine Learning","author":"CM Bishop","year":"2006","unstructured":"Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)"},{"issue":"2","key":"40_CR4","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123\u2013140 (1996)","journal-title":"Mach. Learn."},{"issue":"1","key":"40_CR5","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"key":"40_CR6","unstructured":"Brezo, F.: Detecci\u00f3n de tr\u00e1fico de control de botnets modelizando el flujo de los paquetes de red. Ph.D. thesis, University de Deusto, Febrero 2014"},{"key":"40_CR7","unstructured":"Brezo, F., de la Puerta, J.G., Barroso, D.: BRIANA: Botnet detection Relying on an Intelligent Analysis of Network Architecture. Master\u2019s thesis, University de Deusto, Espa\u00f1a (2012)"},{"issue":"2","key":"40_CR8","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1109\/TITB.2007.902300","volume":"12","author":"B Cho","year":"2008","unstructured":"Cho, B., Yu, H., Lee, J., Chee, Y., Kim, I., Kim, S.: Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels. IEEE Trans. Inf Technol. Biomed. 12(2), 247\u2013256 (2008)","journal-title":"IEEE Trans. Inf Technol. Biomed."},{"key":"40_CR9","unstructured":"Claffy, K.C.: Internet traffic characterization. Ph.D. thesis, University of California, San Diego (1994)"},{"key":"40_CR10","doi-asserted-by":"crossref","unstructured":"Cooper, G.F., Herskovits, E.: A bayesian method for constructing bayesian belief networks from databases. In: Proceedings of the Seventh conference on Uncertainty in Artificial Intelligence, pp. 86\u201394. Morgan Kaufmann Publishers Inc. (1991)","DOI":"10.1016\/B978-1-55860-203-8.50015-2"},{"issue":"1","key":"40_CR11","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1145\/1198255.1198257","volume":"37","author":"M Crotti","year":"2007","unstructured":"Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple statistical fingerprinting. ACM SIGCOMM Comput. Commun. Rev. 37(1), 5\u201316 (2007)","journal-title":"ACM SIGCOMM Comput. Commun. Rev."},{"key":"40_CR12","doi-asserted-by":"crossref","unstructured":"Dewes, C., Wichmann, A., Feldmann, A.: An analysis of internet chat systems. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement, pp. 51\u201364. ACM (2003)","DOI":"10.1145\/948213.948214"},{"key":"40_CR13","doi-asserted-by":"crossref","unstructured":"Erman, J., Mahanti, A., Arlitt, M.: Byte me: a case for byte accuracy in traffic classification. In: Proceedings of the 3rd Annual ACM Workshop on Mining Network Data, pp. 35\u201338. ACM (2007)","DOI":"10.1145\/1269880.1269890"},{"key":"40_CR14","doi-asserted-by":"crossref","unstructured":"Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating between web and peer-to-peer traffic in the network core. In: Proceedings of the 16th International Conference on World Wide Web, pp. 883\u2013892. ACM (2007)","DOI":"10.1145\/1242572.1242692"},{"issue":"3","key":"40_CR15","first-page":"207","volume":"26","author":"H F\u00f6llmer","year":"1973","unstructured":"F\u00f6llmer, H.: On entropy and information gain in random fields. Probab. Theory Relat. Fields 26(3), 207\u2013217 (1973)","journal-title":"Probab. Theory Relat. Fields"},{"key":"40_CR16","unstructured":"Garner, S.: Weka: the waikato environment for knowledge analysis. In: Proceedings of the 1995 New Zealand Computer Science Research Students Conference, pp. 57\u201364 (1995)"},{"key":"40_CR17","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1023\/A:1007465528199","volume":"29","author":"D Geiger","year":"1997","unstructured":"Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network classifiers. Mach. Learn. 29, 131\u2013163 (1997)","journal-title":"Mach. Learn."},{"key":"40_CR18","doi-asserted-by":"crossref","unstructured":"Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: automated construction of application signatures. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data, pp. 197\u2013202. ACM (2005)","DOI":"10.1145\/1080173.1080183"},{"key":"40_CR19","unstructured":"Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is p2p dying or just hiding? [p2p traffic measurement]. In: Global Telecommunications Conference 2004. GLOBECOM 2004, vol. 3, pp. 1532\u20131538. IEEE. IEEE (2004)"},{"key":"40_CR20","doi-asserted-by":"crossref","unstructured":"Keralapura, R., Nucci, A., Zhang, Z.L., Gao, L.: Profiling users in a 3G network using hourglass co-clustering. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 341\u2013352. ACM (2010)","DOI":"10.1145\/1859995.1860034"},{"key":"40_CR21","unstructured":"Lang, T., Armitage, G., Branch, P., Choo, H.Y.: A synthetic traffic model for half-life. In: Australian Telecommunications Networks & Applications Conference, vol. 2003 (2003)"},{"key":"40_CR22","doi-asserted-by":"crossref","unstructured":"Lang, T., Branch, P., Armitage, G.: A synthetic traffic model for quake3. In: Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 233\u2013238. ACM (2004)","DOI":"10.1145\/1067343.1067373"},{"issue":"2","key":"40_CR23","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1111\/j.1466-8238.2007.00358.x","volume":"17","author":"JM Lobo","year":"2008","unstructured":"Lobo, J.M., Jim\u00e9nez-Valverde, A., Real, R.: AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145\u2013151 (2008)","journal-title":"Glob. Ecol. Biogeogr."},{"key":"40_CR24","unstructured":"Madhukar, A., Williamson, C.: A longitudinal study of p2p traffic classification. In: 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems 2006. MASCOTS 2006, pp. 179\u2013188. IEEE (2006)"},{"key":"40_CR25","doi-asserted-by":"crossref","unstructured":"Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1\u20138. IEEE (2008)","DOI":"10.1109\/CVPR.2008.4587630"},{"key":"40_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"94","DOI":"10.1007\/978-3-540-71617-4_10","volume-title":"Passive and Active Network Measurement","author":"K Mattar","year":"2007","unstructured":"Mattar, K., Sridharan, A., Zang, H., Matta, I., Bestavros, A.: TCP over CDMA2000 networks: a cross-layer measurement study. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 94\u2013104. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-71617-4_10"},{"key":"40_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1007\/978-3-540-24668-8_21","volume-title":"Passive and Active Network Measurement","author":"A McGregor","year":"2004","unstructured":"McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow clustering using machine learning techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 205\u2013214. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-24668-8_21"},{"key":"40_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1007\/978-3-540-31966-5_4","volume-title":"Passive and Active Network Measurement","author":"AW Moore","year":"2005","unstructured":"Moore, A.W., Papagiannaki, K.: Toward the accurate identification of network applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41\u201354. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/978-3-540-31966-5_4"},{"key":"40_CR29","unstructured":"Moore, K.: 71% of online adults now use video-sharing sites. Pew Internet and American Life Project (2011)"},{"key":"40_CR30","doi-asserted-by":"crossref","unstructured":"Nguyen, T.T., Armitage, G.: Training on multiple sub-flows to optimise the use of machine learning classifiers in real-world IP networks. In: Proceedings 2006 31st IEEE Conference on Local Computer Networks, pp. 369\u2013376. IEEE (2006)","DOI":"10.1109\/LCN.2006.322122"},{"issue":"4","key":"40_CR31","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1109\/90.330413","volume":"2","author":"V Paxson","year":"1994","unstructured":"Paxson, V.: Empirically derived analytic models of wide-area TCP connections. IEEE\/ACM Trans. Networking (TON) 2(4), 316\u2013336 (1994)","journal-title":"IEEE\/ACM Trans. Networking (TON)"},{"issue":"23","key":"40_CR32","doi-asserted-by":"publisher","first-page":"2435","DOI":"10.1016\/S1389-1286(99)00112-7","volume":"31","author":"V Paxson","year":"1999","unstructured":"Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31(23), 2435\u20132463 (1999)","journal-title":"Comput. Netw."},{"issue":"9","key":"40_CR33","doi-asserted-by":"publisher","first-page":"802","DOI":"10.1109\/LCOMM.2005.1506708","volume":"9","author":"K Pentikousis","year":"2005","unstructured":"Pentikousis, K., Palola, M., Jurvansuu, M., Perala, P.: Active goodput measurements from a public 3G\/UMTS network. IEEE Commun. Lett. 9(9), 802\u2013804 (2005)","journal-title":"IEEE Commun. Lett."},{"key":"40_CR34","unstructured":"Powers, D.: Evaluation: From precision, recall and f-factor to ROC, informedness, markedness & correlation (Technical report). Adelaide, Australia (2007)"},{"key":"40_CR35","unstructured":"Quinlan, J.: C4.5: Programs for Machine Learning. Morgan kaufmann, San Mateo (1993)"},{"key":"40_CR36","unstructured":"Reichl, P., Umlauft, M.: Project WISQY: a measurement-based end-to-end application-level performance comparison of 2.5G and 3G networks. In: Wireless Telecommunications Symposium 2005, pp. 9\u201314. IEEE (2005)"},{"key":"40_CR37","unstructured":"Roesch, M., et al.: Snort: lightweight intrusion detection for networks. In: LISA, vol. 99, pp. 229\u2013238 (1999)"},{"key":"40_CR38","doi-asserted-by":"crossref","unstructured":"Roughan, M., Sen, S., Spatscheck, O., Duffield, N.: Class-of-service mapping for QOS: a statistical signature-based approach to IP traffic classification. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 135\u2013148. ACM (2004)","DOI":"10.1145\/1028788.1028805"},{"key":"40_CR39","doi-asserted-by":"crossref","unstructured":"Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th International Conference on World Wide Web, pp. 512\u2013521. ACM (2004)","DOI":"10.1145\/988672.988742"},{"issue":"2","key":"40_CR40","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1504\/IJCAT.2009.026595","volume":"35","author":"Y Singh","year":"2009","unstructured":"Singh, Y., Kaur, A., Malhotra, R.: Comparative analysis of regression and machine learning methods for predicting fault proneness models. Int. J. Comput. Appl. Technol. 35(2), 183\u2013193 (2009)","journal-title":"Int. J. Comput. Appl. Technol."},{"issue":"1","key":"40_CR41","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.chemolab.2005.09.003","volume":"81","author":"B \u00dcst\u00fcn","year":"2006","unstructured":"\u00dcst\u00fcn, B., Melssen, W.J., Buydens, L.M.: Facilitating the application of support vector regression by using a universal pearson vii function based kernel. Chemometr. Intell. Lab. Syst. 81(1), 29\u201340 (2006)","journal-title":"Chemometr. Intell. Lab. Syst."},{"key":"40_CR42","doi-asserted-by":"crossref","unstructured":"Willkomm, D., Machiraju, S., Bolot, J., Wolisz, A.: Primary users in cellular networks: a large-scale measurement study. In: 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks 2008. DySPAN 2008, pp. 1\u201311. IEEE (2008)","DOI":"10.1109\/DYSPAN.2008.48"},{"key":"40_CR43","doi-asserted-by":"crossref","unstructured":"Zeilenga, K.D.: Internet assigned numbers authority (IANA) considerations for the lightweight directory access protocol (LDAP) (2002)","DOI":"10.17487\/rfc3383"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29859-3_40","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:29:03Z","timestamp":1710268143000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-29859-3_40"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298586","9783030298593"],"references-count":43,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29859-3_40","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"134","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}