{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:15:08Z","timestamp":1726042508488},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298586"},{"type":"electronic","value":"9783030298593"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29859-3_29","type":"book-chapter","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T16:03:53Z","timestamp":1566835433000},"page":"335-345","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Convolutional CARMEN: Tomographic Reconstruction for Night Observation"],"prefix":"10.1007","author":[{"given":"Francisco","family":"Garc\u00eda Riesgo","sequence":"first","affiliation":[]},{"given":"Sergio Luis","family":"Su\u00e1rez G\u00f3mez","sequence":"additional","affiliation":[]},{"given":"Fernando","family":"S\u00e1nchez Lasheras","sequence":"additional","affiliation":[]},{"given":"Carlos","family":"Gonz\u00e1lez Guti\u00e9rrez","sequence":"additional","affiliation":[]},{"given":"Carmen","family":"Pe\u00f1alver San Crist\u00f3bal","sequence":"additional","affiliation":[]},{"given":"Francisco Javier","family":"de Cos Juez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,26]]},"reference":[{"key":"29_CR1","doi-asserted-by":"publisher","first-page":"2508","DOI":"10.1093\/mnras\/stu758","volume":"441","author":"J Osborn","year":"2014","unstructured":"Osborn, J., et al.: Open-loop tomography with artificial neural networks on CANARY: On-sky results. Mon. Not. R. Astron. Soc. 441, 2508\u20132514 (2014). https:\/\/doi.org\/10.1093\/mnras\/stu758","journal-title":"Mon. Not. R. Astron. Soc."},{"key":"29_CR2","doi-asserted-by":"publisher","first-page":"6492","DOI":"10.1364\/OE.18.006492","volume":"18","author":"D Guzm\u00e1n","year":"2010","unstructured":"Guzm\u00e1n, D., de Cos Juez, F.J., Lasheras, F.S., Myers, R., Young, L.: Deformable mirror model for open-loop adaptive optics using multivariate adaptive regression splines. Opt. Express 18, 6492\u20136505 (2010)","journal-title":"Opt. Express"},{"key":"29_CR3","doi-asserted-by":"publisher","first-page":"e165","DOI":"10.1038\/lsa.2014.46","volume":"3","author":"MJ Booth","year":"2014","unstructured":"Booth, M.J.: Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014)","journal-title":"Light Sci. Appl."},{"issue":"2","key":"29_CR4","doi-asserted-by":"publisher","first-page":"78","DOI":"10.17925\/USOR.2011.04.02.78","volume":"4","author":"J Carroll","year":"2011","unstructured":"Carroll, J., Dubis, A.M., Godara, P., Dubra, A., Stepien, K.E.: Clinical applications of retinal imaging with adaptive optics. Clin. Appl. Retin. Imaging Adapt. Opt. 4(2), 78\u201383 (2011). https:\/\/doi.org\/10.17925\/USOR.2011.04.02.78. US Ophthalmic Review","journal-title":"Clin. Appl. Retin. Imaging Adapt. Opt."},{"key":"29_CR5","doi-asserted-by":"publisher","first-page":"1124","DOI":"10.1038\/s41598-018-19559-9","volume":"8","author":"Y Wang","year":"2018","unstructured":"Wang, Y., et al.: Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence. Sci. Rep. 8, 1124 (2018)","journal-title":"Sci. Rep."},{"key":"29_CR6","unstructured":"Dipper, N., Basden, A., Bitenc, U., Myers, R.M., Richards, A., Younger, E.J.: Adaptive optics real-time control systems for the E-ELT. In: Proceedings of the Third AO4ELT Conference, vol. 1, p. 41 (2013)"},{"key":"29_CR7","doi-asserted-by":"publisher","first-page":"783","DOI":"10.1364\/JOSAA.11.000783","volume":"11","author":"BL Ellerbroek","year":"1994","unstructured":"Ellerbroek, B.L.: First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes. JOSA A 11, 783\u2013805 (1994)","journal-title":"JOSA A"},{"key":"29_CR8","doi-asserted-by":"publisher","first-page":"A253","DOI":"10.1364\/JOSAA.27.00A253","volume":"27","author":"F Vidal","year":"2010","unstructured":"Vidal, F., Gendron, E., Rousset, G.: Tomography approach for multi-object adaptive optics. JOSA A 27, A253\u2013A264 (2010)","journal-title":"JOSA A"},{"key":"29_CR9","doi-asserted-by":"publisher","first-page":"23565","DOI":"10.1364\/OE.22.023565","volume":"22","author":"G Sivo","year":"2014","unstructured":"Sivo, G., et al.: First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder. Opt. Express 22, 23565\u201323591 (2014)","journal-title":"Opt. Express"},{"key":"29_CR10","doi-asserted-by":"crossref","unstructured":"Osborn, J., et al.: First on-sky results of a neural network based tomographic reconstructor: Carmen on Canary. In: Marchetti, E., Close, L.M., V\u00e9ran, J.-P. (eds.) Adaptive Optics Systems IV. International Society for Optics and Photonics, vol. 9148, p. 91484M (2014)","DOI":"10.1117\/12.2057462"},{"key":"29_CR11","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1007\/978-3-319-92639-1_34","volume-title":"HAIS 2018","author":"SL Su\u00e1rez G\u00f3mez","year":"2018","unstructured":"Su\u00e1rez G\u00f3mez, S.L., et al.: Compensating atmospheric turbulence with convolutional neural networks for defocused pupil image wave- front sensors. In: de Cos Juez, F., et al. (eds.) HAIS 2018. LNCS, vol. 10870, pp. 411\u2013421. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-92639-1_34"},{"issue":"1-2","key":"29_CR12","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/s10686-018-9609-y","volume":"47","author":"Stefan Hippler","year":"2018","unstructured":"Hippler, S., et al.: Single conjugate adaptive optics for the ELT instrument METIS. Exp. Astron. (2018). https:\/\/doi.org\/10.1007\/s10686-018-9609-y","journal-title":"Experimental Astronomy"},{"key":"29_CR13","doi-asserted-by":"crossref","unstructured":"Bendek, E.A., Hart, M., Powell, K.B., Vaitheeswaran, V., McCarthy, D., Kulesa, C.: Latest GLAO results and advancements in laser tomography implementation at the 6.5\u00a0m MMT telescope. In: Astronomical Adaptive Optics Systems and Applications IV, vol. 8149, p. 814907 (2011)","DOI":"10.1117\/12.894149"},{"key":"29_CR14","unstructured":"Beckers, J.M. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. In: European Southern Observatory Conference and Workshop Proceedings, vol. 30, p. 693 (1988)"},{"key":"29_CR15","doi-asserted-by":"publisher","first-page":"L2","DOI":"10.1051\/0004-6361\/201116658","volume":"529","author":"E Gendron","year":"2011","unstructured":"Gendron, E., et al.: MOAO first on-sky demonstration with CANARY. Astron. Astrophys. 529, L2 (2011). https:\/\/doi.org\/10.1051\/0004-6361\/201116658","journal-title":"Astron. Astrophys."},{"key":"29_CR16","unstructured":"Basden, A.: DASP the Durham Adaptive optics Simulation Platform: Modelling and simulation of adaptive optics systems"},{"key":"29_CR17","doi-asserted-by":"publisher","first-page":"6385","DOI":"10.1364\/AO.47.006385","volume":"47","author":"A Zilberman","year":"2008","unstructured":"Zilberman, A., Golbraikh, E., Kopeika, N.S.: Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model. Appl. Opt. 47, 6385\u20136391 (2008)","journal-title":"Appl. Opt."},{"key":"29_CR18","unstructured":"Aghdam, H.H., Heravi, E.J.: Guide to Convolutional Neural Networks. Springer, New York (2017). vol. 10, pp. 973\u2013978"},{"key":"29_CR19","doi-asserted-by":"publisher","unstructured":"Lasheras, J.E.S., Donquiles, C.G., Nieto, P.J., et al.: A methodology for detecting relevant single nucleotide polymorphism in prostate cancer with multivariate adaptive regression splines and backpropagation artificial neural networks. Neural Comput. Appl., 1\u20138 (2018). https:\/\/doi.org\/10.1007\/s00521-018-3503-4","DOI":"10.1007\/s00521-018-3503-4"},{"key":"29_CR20","doi-asserted-by":"crossref","unstructured":"Su\u00e1rez-G\u00f3mez, S.L., et al.: An approach using deep learning for tomographic reconstruction in solar observation. In: Proceedings of the Adaptive Optics for Extremely Large Telescopes 5; Instituto de Astrof\u00edsica de Canarias (IAC) (2017)","DOI":"10.26698\/AO4ELT5.0033"},{"key":"29_CR21","unstructured":"Su\u00e1rez G\u00f3mez, S.L.: T\u00e9cnicas estad\u00edsticas multivariantes de series temporales para la validaci\u00f3n de un sistema reconstructor basado en redes neuronales (2016)"},{"key":"29_CR22","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","volume":"1","author":"Y LeCun","year":"1989","unstructured":"LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541\u2013551 (1989)","journal-title":"Neural Comput."},{"key":"29_CR23","doi-asserted-by":"crossref","unstructured":"Mirowski, P.W., LeCun, Y., Madhavan, D., Kuzniecky, R.: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG. In: 2008 IEEE Workshop on Machine Learning for Signal Processing, pp. 244\u2013249 (2008)","DOI":"10.1109\/MLSP.2008.4685487"},{"key":"29_CR24","doi-asserted-by":"crossref","unstructured":"Nagi, J., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342\u2013347 (2011)","DOI":"10.1109\/ICSIPA.2011.6144164"},{"key":"29_CR25","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)"},{"key":"29_CR26","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1007\/978-3-319-92639-1_7","volume-title":"Hybrid Artificial Intelligent Systems","author":"SL Su\u00e1rez G\u00f3mez","year":"2018","unstructured":"Su\u00e1rez G\u00f3mez, S.L., et al.: Improving adaptive optics reconstructions with a deep learning approach. In: de Cos Juez, F.J., et al. (eds.) Hybrid Artificial Intelligent Systems, pp. 74\u201383. Springer International Publishing, Cham (2018)"},{"key":"29_CR27","doi-asserted-by":"crossref","unstructured":"Osborn, J., et al.: Open-loop tomography using artificial neural networks. Proc. Adapt. Opt. Extrem. Large Telesc. 2, 2420\u20132434 (2011)","DOI":"10.1364\/OE.20.002420"},{"key":"29_CR28","first-page":"1051","volume-title":"Advances in Intelligent Systems and Computing","author":"Sergio Luis Su\u00e1rez G\u00f3mez","year":"2017","unstructured":"Su\u00e1rez G\u00f3mez, S.L., et al.: Analysing the performance of a tomographic reconstructor with different neural networks frameworks. In: International Conference on Intelligent Systems Design and Applications, pp. 1051\u20131060 (2016)"},{"issue":"3","key":"29_CR29","doi-asserted-by":"publisher","first-page":"2420","DOI":"10.1364\/OE.20.002420","volume":"20","author":"James Osborn","year":"2012","unstructured":"Osborn, J., et al.: Using artificial neural networks for open-loop tomography. Opt. Express 20, 2420\u20132434 (2012). https:\/\/doi.org\/10.1364\/oe.20.002420","journal-title":"Optics Express"},{"key":"29_CR30","doi-asserted-by":"crossref","unstructured":"Hardy, J.W.: Adaptive optics for astronomical telescopes. Oxford University Press on Demand, vol. 16 (1998)","DOI":"10.1093\/oso\/9780195090192.001.0001"},{"key":"29_CR31","doi-asserted-by":"publisher","first-page":"68","DOI":"10.1016\/j.ecoleng.2012.12.015","volume":"53","author":"J.R. Alonso Fern\u00e1ndez","year":"2013","unstructured":"Alonso Fern\u00e1ndez, J.R., D\u00edaz Mu\u00f1iz, C., Garcia Nieto, P.J., de Cos Juez, F.J., S\u00e1nchez Lasheras, F., Roque\u00f1\u00ed, M.N.: Forecasting the cyanotoxins presence in fresh waters: A new model based on genetic algorithms combined with the MARS technique. Ecol. Eng., 68\u201378 (2013). https:\/\/doi.org\/10.1016\/j.ecoleng.2012.12.015","journal-title":"Ecological Engineering"}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29859-3_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:27:52Z","timestamp":1710268072000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-29859-3_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298586","9783030298593"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29859-3_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"134","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}