{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:14:54Z","timestamp":1726042494129},"publisher-location":"Cham","reference-count":15,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030298586"},{"type":"electronic","value":"9783030298593"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-29859-3_11","type":"book-chapter","created":{"date-parts":[[2019,8,26]],"date-time":"2019-08-26T16:03:53Z","timestamp":1566835433000},"page":"123-132","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Particle Swarm Optimization-Based CNN-LSTM Networks for Anomalous Query Access Control in RBAC-Administered Model"],"prefix":"10.1007","author":[{"given":"Tae-Young","family":"Kim","sequence":"first","affiliation":[]},{"given":"Sung-Bae","family":"Cho","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,26]]},"reference":[{"issue":"3","key":"11_CR1","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1145\/1815933.1815940","volume":"38","author":"E Shmueli","year":"2010","unstructured":"Shmueli, E., Vaisenberg, R., Elovici, Y., Glezer, C.: Database encryption: an overview of contemporary challenges and design considerations. ACM SIGMOD Rec. 38(3), 29\u201334 (2010)","journal-title":"ACM SIGMOD Rec."},{"key":"11_CR2","doi-asserted-by":"crossref","unstructured":"Dong, X., Li, X.: A novel distributed database solution based on MySQL. In: 7th International Conference on Information Technology in Medicine and Education (ITME), pp. 329\u2013333 (2015)","DOI":"10.1109\/ITME.2015.48"},{"issue":"12","key":"11_CR3","first-page":"888","volume":"47","author":"I Basharat","year":"2012","unstructured":"Basharat, I., Azam, F., Muzaffar, A.W.: Database security and encryption: a survey study. Int. J. Comput. Appl. 47(12), 888\u2013975 (2012)","journal-title":"Int. J. Comput. Appl."},{"key":"11_CR4","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.istr.2010.11.002","volume":"15","author":"KR Sarkar","year":"2010","unstructured":"Sarkar, K.R.: Assessing insider threats to information security using technical, behavioural and organizational measures. Inf. Secur. Tech. Rep. 15, 112\u2013133 (2010)","journal-title":"Inf. Secur. Tech. Rep."},{"key":"11_CR5","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.eswa.2018.04.004","volume":"106","author":"T-Y Kim","year":"2018","unstructured":"Kim, T.-Y., Cho, S.B.: Web traffic anomaly detection using C-LSTM neural networks. Expert Syst. Appl. 106, 66\u201376 (2018)","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"11_CR6","first-page":"569","volume":"12","author":"CM Chen","year":"2016","unstructured":"Chen, C.M., Guan, D.J., Huang, Y.Z., Ou, Y.H.: Anomaly network intrusion detection using hidden Markov model. Int. J. Innovative Comput. Inf. Control (ICIC) 12(2), 569\u2013580 (2016)","journal-title":"Int. J. Innovative Comput. Inf. Control (ICIC)"},{"key":"11_CR7","doi-asserted-by":"crossref","unstructured":"Islam, M.S., Kuzu, M., Kantarcioglu, M.: A dynamic approach to detect anomalous queries on relational databases. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 245\u2013252 (2015)","DOI":"10.1145\/2699026.2699120"},{"key":"11_CR8","doi-asserted-by":"publisher","first-page":"238","DOI":"10.1016\/j.ins.2016.06.038","volume":"369","author":"CA Ronao","year":"2016","unstructured":"Ronao, C.A., Cho, S.B.: Anomalous query access detection in RBAC-administered databases with random forest and PCA. Inf. Sci. 369, 238\u2013250 (2016)","journal-title":"Inf. Sci."},{"key":"11_CR9","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1007\/978-981-10-2738-3_37","volume-title":"Security in Computing and Communications","author":"S Puthran","year":"2016","unstructured":"Puthran, S., Shah, K.: Intrusion detection using improved decision tree algorithm with binary and quad split. In: Mueller, P., Thampi, S.M., Alam Bhuiyan, M.Z., Ko, R., Doss, R., Alcaraz Calero, J.M. (eds.) SSCC 2016. CCIS, vol. 625, pp. 427\u2013438. Springer, Singapore (2016). https:\/\/doi.org\/10.1007\/978-981-10-2738-3_37"},{"key":"11_CR10","doi-asserted-by":"crossref","unstructured":"Dias, L.P., Cerqueira, J.J., Assis, K.D.R., Almeida, R.C.: Using artificial neural network in intrusion detection systems to computer networks. In: Computer Science and Electronic Engineering (CEEC), pp. 145\u2013150 (2017)","DOI":"10.1109\/CEEC.2017.8101615"},{"issue":"4","key":"11_CR11","first-page":"1959","volume":"3","author":"KS Devikrishna","year":"2013","unstructured":"Devikrishna, K.S., Ramakrishna, B.B.: An artificial neural network based intrusion detection system and classification of attacks. Int. J. Eng. Res. Appl. (IJERA) 3(4), 1959\u20131964 (2013)","journal-title":"Int. J. Eng. Res. Appl. (IJERA)"},{"issue":"6","key":"11_CR12","doi-asserted-by":"publisher","first-page":"1669","DOI":"10.1007\/s00521-015-1964-2","volume":"27","author":"BM Aslahi-Shahri","year":"2016","unstructured":"Aslahi-Shahri, B.M., et al.: A hybrid method consisting of GA and SVM for intrusion detection system. Neural Comput. Appl. 27(6), 1669\u20131676 (2016)","journal-title":"Neural Comput. Appl."},{"key":"11_CR13","doi-asserted-by":"publisher","first-page":"20255","DOI":"10.1109\/ACCESS.2018.2820092","volume":"6","author":"MH Ali","year":"2018","unstructured":"Ali, M.H., Mohammed, B.A.D., Ismail, A., Zolkipli, M.F.: A new intrusion detection system based on fast learning network and particle swarm optimization. IEEE Access 6, 20255\u201320261 (2018)","journal-title":"IEEE Access"},{"issue":"4","key":"11_CR14","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1007\/PL00011652","volume":"2","author":"Y-G Seo","year":"2000","unstructured":"Seo, Y.-G., Cho, S.-B., Yao, X.: The impact of payoff function and local interaction on the N-player iterated prisoner\u2019s dilemma. Knowl. Inf. Syst. 2(4), 461\u2013478 (2000)","journal-title":"Knowl. Inf. Syst."},{"issue":"3","key":"11_CR15","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1023\/A:1008388118869","volume":"9","author":"S-B Cho","year":"1998","unstructured":"Cho, S.-B., Shimohara, K.: Evolutionary learning of modular neural networks with genetic programming. Appl. Intell. 9(3), 191\u2013200 (1998)","journal-title":"Appl. Intell."}],"container-title":["Lecture Notes in Computer Science","Hybrid Artificial Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29859-3_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T18:09:06Z","timestamp":1710266946000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-29859-3_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030298586","9783030298593"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29859-3_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Hybrid Artificial Intelligence Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Le\u00f3n","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hais2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.haisconference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"134","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}