{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,19]],"date-time":"2025-04-19T11:12:09Z","timestamp":1745061129553},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030295127"},{"type":"electronic","value":"9783030295134"}],"license":[{"start":{"date-parts":[[2019,8,24]],"date-time":"2019-08-24T00:00:00Z","timestamp":1566604800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-29513-4_36","type":"book-chapter","created":{"date-parts":[[2019,8,23]],"date-time":"2019-08-23T13:04:00Z","timestamp":1566565440000},"page":"490-500","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":17,"title":["Determining the Number of Hidden Layers in Neural Network by Using Principal Component Analysis"],"prefix":"10.1007","author":[{"given":"Muh.","family":"Ibnu Choldun R.","sequence":"first","affiliation":[]},{"given":"Judhi","family":"Santoso","sequence":"additional","affiliation":[]},{"given":"Kridanto","family":"Surendro","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,8,24]]},"reference":[{"issue":"4","key":"36_CR1","doi-asserted-by":"publisher","first-page":"878","DOI":"10.1007\/s10489-015-0737-z","volume":"44","author":"M Madhiarasan","year":"2016","unstructured":"Madhiarasan, M., Deepa, S.N.: A novel criterion to select hidden neuron numbers in improved back propagation networks for wind speed forecasting. Appl. Intell. 44(4), 878\u2013893 (2016). \n https:\/\/doi.org\/10.1007\/s10489-015-0737-z","journal-title":"Appl. Intell."},{"issue":"4","key":"36_CR2","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/s10462-016-9506-6","volume":"48","author":"M Madhiarasan","year":"2017","unstructured":"Madhiarasan, M., Deepa, S.N.: Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting. Artif. Intell. Rev. 48(4), 449\u2013471 (2017). \n https:\/\/doi.org\/10.1007\/s10462-016-9506-6","journal-title":"Artif. Intell. Rev."},{"key":"36_CR3","doi-asserted-by":"publisher","unstructured":"Qolomany, B., Maabreh, M., Al-Fuqaha, A., Gupta, A., Benhaddou, D.: Parameters optimization of deep learning models using particle swarm optimization. In: 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1285\u20131290 (2017). \n https:\/\/doi.org\/10.1109\/IWCMC.2017.7986470","DOI":"10.1109\/IWCMC.2017.7986470"},{"key":"36_CR4","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1007\/978-3-319-65172-9","volume":"744","author":"AJ Thomas","year":"2017","unstructured":"Thomas, A.J., Petridis, M., Walters, S.D., Gheytassi, S.M., Morgan, R.E.: Eng. Appl. Neural Netw. 744, 279\u2013290 (2017). \n https:\/\/doi.org\/10.1007\/978-3-319-65172-9","journal-title":"Eng. Appl. Neural Netw."},{"issue":"5","key":"36_CR5","doi-asserted-by":"publisher","first-page":"241","DOI":"10.18178\/ijmlc.2016.6.5.605","volume":"6","author":"AJ Thomas","year":"2016","unstructured":"Thomas, A.J., Walters, S.D., Gheytassi, S.M., Morgan, R.E., Petridis, M.: On the optimal node ratio between hidden layers: a probabilistic study. Int. J. Mach. Learn. Comput. 6(5), 241\u2013247 (2016). \n https:\/\/doi.org\/10.18178\/ijmlc.2016.6.5.605","journal-title":"Int. J. Mach. Learn. Comput."},{"key":"36_CR6","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1016\/j.neunet.2017.12.007","volume":"98","author":"NJ Guliyev","year":"2018","unstructured":"Guliyev, N.J., Ismailov, V.E.: On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural Netw. 98, 296\u2013304 (2018). \n https:\/\/doi.org\/10.1016\/j.neunet.2017.12.007","journal-title":"Neural Netw."},{"issue":"10","key":"36_CR7","doi-asserted-by":"publisher","first-page":"2282","DOI":"10.1109\/TNNLS.2016.2580741","volume":"28","author":"T Nitta","year":"2017","unstructured":"Nitta, T.: Resolution of singularities introduced by hierarchical structure in deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2282\u20132293 (2017). \n https:\/\/doi.org\/10.1109\/TNNLS.2016.2580741","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"36_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13321-017-0226-y","volume":"9","author":"A Koutsoukas","year":"2017","unstructured":"Koutsoukas, A., Monaghan, K.J., Li, X., Huan, J.: Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminform. 9(1), 1\u201313 (2017). \n https:\/\/doi.org\/10.1186\/s13321-017-0226-y","journal-title":"J. Cheminform."},{"key":"36_CR9","doi-asserted-by":"crossref","unstructured":"Bunjongjit, S., Ngaopitakkul, A., Pothisarn, C., Jettanasen, C.: Improvement to reduce training time of back-propagation neural networks for discrimination between external short circuit and internal winding fault. In: International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, pp. 614\u2013618 (2014)","DOI":"10.1109\/InfoSEEE.2014.6948187"},{"key":"36_CR10","doi-asserted-by":"crossref","unstructured":"Chhachhiya, D., Sharma, A., Gupta, M.: Designing optimal architecture of neural network with particle swarm optimization techniques specifically for educational dataset. In: 7th International Conference on Cloud Computing, Data Science and Engineering - Confluence, Noida, pp. 52\u201357 (2017)","DOI":"10.1109\/CONFLUENCE.2017.7943123"},{"issue":"1","key":"36_CR11","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1007\/s11831-017-9237-0","volume":"25","author":"S Lee","year":"2018","unstructured":"Lee, S., Ha, J., Zokhirova, M., Moon, H., Lee, J.: Background information of deep learning for structural engineering. Arch. Comput. Methods Eng. 25(1), 121\u2013129 (2018). \n https:\/\/doi.org\/10.1007\/s11831-017-9237-0","journal-title":"Arch. Comput. Methods Eng."},{"key":"36_CR12","unstructured":"Tej, M.L., Holban, S.: Comparative study of clustering distance measures to determine neural network architectures. In: IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 189\u2013194 (2018)"},{"key":"36_CR13","doi-asserted-by":"crossref","unstructured":"Tej, M.L., Holban, S.: Determining optimal neural network architecture using regression methods. In: International Conference on Development and Application Systems (DAS), pp. 180\u2013189 (2018)","DOI":"10.1109\/DAAS.2018.8396093"},{"key":"36_CR14","doi-asserted-by":"crossref","unstructured":"Tej, M.L.: Neural network architecture through data mining techniques. In: Proceedings of the IIER International Conference, Bucharest, Romania (2017)","DOI":"10.1109\/DAAS.2018.8396089"},{"key":"36_CR15","doi-asserted-by":"publisher","unstructured":"Lorenzo, P.R., Nalepa, J., Kawulok, M., Ramos, L.S., Pastor, J.R.: Particle swarm optimization for hyper-parameter selection in deep neural networks. In: Proceedings of the 2017 on Genetic and Evolutionary Computation Conference - GECCO 2017, vol. 8, pp. 481\u2013488 (2017). \n https:\/\/doi.org\/10.1145\/3071178.3071208","DOI":"10.1145\/3071178.3071208"},{"key":"36_CR16","first-page":"281","volume":"13","author":"J Bergstra","year":"2012","unstructured":"Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281\u2013305 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"36_CR17","doi-asserted-by":"crossref","unstructured":"Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: ICML (2007)","DOI":"10.1145\/1273496.1273556"},{"key":"36_CR18","volume-title":"Deep Learning","author":"Y Bengio","year":"2016","unstructured":"Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)"},{"key":"36_CR19","volume-title":"Machine Learning","author":"TM Mitchell","year":"1997","unstructured":"Mitchell, T.M.: Machine Learning. McGraw-Hill, Boston (1997)"},{"key":"36_CR20","volume-title":"Principal Component Analysis","author":"IT Jollife","year":"2002","unstructured":"Jollife, I.T.: Principal Component Analysis. Springer, New York (2002)"},{"key":"36_CR21","volume-title":"Deep Learning Essentials","author":"W Di","year":"2018","unstructured":"Di, W., Bhardwaj, A., Wei, J.: Deep Learning Essentials. Packt Publishing, Birmingham (2018)"}],"container-title":["Advances in Intelligent Systems and Computing","Intelligent Systems and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-29513-4_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,23]],"date-time":"2019-08-23T13:13:51Z","timestamp":1566566031000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-29513-4_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,24]]},"ISBN":["9783030295127","9783030295134"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-29513-4_36","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2019,8,24]]},"assertion":[{"value":"24 August 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IntelliSys","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Proceedings of SAI Intelligent Systems Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 September 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"intellisys2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/saiconference.com\/IntelliSys","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}