{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T21:09:12Z","timestamp":1742936952937,"version":"3.40.3"},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030243012"},{"type":"electronic","value":"9783030243029"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-24302-9_42","type":"book-chapter","created":{"date-parts":[[2019,6,28]],"date-time":"2019-06-28T08:02:51Z","timestamp":1561708971000},"page":"591-601","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Predicting Sediment Concentrations Using a Nonlinear Autoregressive Exogenous Neural Network"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-6629-5639","authenticated-orcid":false,"given":"Vladimir J.","family":"Alarcon","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,6,29]]},"reference":[{"key":"42_CR1","doi-asserted-by":"crossref","unstructured":"Xu, N., Saiers, J.E., Wilson, H.F., Raymond, P.A.: Simulating streamflow and dissolved organic matter export from a forested watershed. Water Resources Res. 48(5), Article number W05519 (2012)","DOI":"10.1029\/2011WR011423"},{"key":"42_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-642-40457-3_21-1","volume-title":"Handbook of Hydrometeorological Ensemble Forecasting","author":"CY Xu","year":"2017","unstructured":"Xu, C.Y., Xiong, L., Singh, V.P.: Black-Box hydrological models. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H., Schaake, J. (eds.) Handbook of Hydrometeorological Ensemble Forecasting, pp. 1\u201348. Springer, Heidelberg (2017). \n https:\/\/doi.org\/10.1007\/978-3-642-40457-3_21-1"},{"issue":"9","key":"42_CR3","doi-asserted-by":"publisher","first-page":"3676","DOI":"10.1007\/s12205-017-1933-7","volume":"22","author":"S Nacar","year":"2018","unstructured":"Nacar, S., H\u0131n\u0131s, M.A., Kankal, M.: Forecasting daily streamflow discharges using various neural network models and training algorithms. KSCE J. Civil Eng. 22(9), 3676\u20133685 (2018). \n https:\/\/doi.org\/10.1007\/s12205-017-1933-7","journal-title":"KSCE J. Civil Eng."},{"issue":"2","key":"42_CR4","doi-asserted-by":"publisher","first-page":"520","DOI":"10.2166\/hydro.2017.076","volume":"20","author":"AB Dariane","year":"2018","unstructured":"Dariane, A.B., Azimi, S.: Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection. J. Hydroinform. 20(2), 520\u2013532 (2018). \n https:\/\/doi.org\/10.2166\/hydro.2017.076","journal-title":"J. Hydroinform."},{"issue":"15","key":"42_CR5","doi-asserted-by":"publisher","first-page":"2763","DOI":"10.1080\/02626667.2016.1154151","volume":"61","author":"IN Daliakopoulos","year":"2016","unstructured":"Daliakopoulos, I.N., Tsanis, I.K.: Comparison of an artificial neural network and a conceptual rainfall\u2013runoff model in the simulation of ephemeral streamflow. Hydrol. Sci. J. 61(15), 2763\u20132774 (2016). \n https:\/\/doi.org\/10.1080\/02626667.2016.1154151","journal-title":"Hydrol. Sci. J."},{"issue":"1\u20134","key":"42_CR6","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.jhydrol.2010.02.037","volume":"386","author":"LE Besaw","year":"2010","unstructured":"Besaw, L.E., Rizzo, D.M., Bierman, P.R., Hackett, W.R.: Advances in ungauged streamflow prediction using artificial neural networks. J. Hydrol. 386(1\u20134), 27\u201337 (2010). \n https:\/\/doi.org\/10.1016\/j.jhydrol.2010.02.037","journal-title":"J. Hydrol."},{"key":"42_CR7","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1016\/j.ecolind.2018.03.072","volume":"91","author":"W Halecki","year":"2018","unstructured":"Halecki, W., Kruk, E., Ryczek, M.: Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surface-erosion processes using an ANN (Artificial Neural Network) based on geomorphological parameters in mountainous catchments. Ecol. Ind. 91, 461\u2013469 (2018). \n https:\/\/doi.org\/10.1016\/j.ecolind.2018.03.072","journal-title":"Ecol. Ind."},{"issue":"1","key":"42_CR8","doi-asserted-by":"publisher","first-page":"697","DOI":"10.15666\/aeer\/1601_697708","volume":"16","author":"R Meral","year":"2018","unstructured":"Meral, R., Dogan Demir, A., Cemek, B.: Analyses of turbidity and acoustic backscatter signal with artificial neural network for estimation of suspended sediment concentration. Appl. Ecol. Environ. Res. 16(1), 697\u2013708 (2018). \n https:\/\/doi.org\/10.15666\/aeer\/1601_697708","journal-title":"Appl. Ecol. Environ. Res."},{"issue":"15","key":"42_CR9","doi-asserted-by":"publisher","first-page":"4909","DOI":"10.1007\/s11269-017-1785-4","volume":"31","author":"V Sari","year":"2017","unstructured":"Sari, V., dos Reis Castro, N.M., Pedrollo, O.C.: Estimate of suspended sediment concentration from monitored data of turbidity and water level using artificial neural networks. Water Resources Manag. 31(15), 4909\u20134923 (2017). \n https:\/\/doi.org\/10.1007\/s11269-017-1785-4","journal-title":"Water Resources Manag."},{"issue":"3","key":"42_CR10","doi-asserted-by":"publisher","first-page":"574","DOI":"10.2166\/hydro.2012.123","volume":"14","author":"B Bhattacharya","year":"2012","unstructured":"Bhattacharya, B., Van Kessel, T., Solomatine, D.P.: Spatio-temporal prediction of suspended sediment concentration in the coastal zone using an artificial neural network and a numerical model. J. Hydroinform. 14(3), 574\u2013584 (2012). \n https:\/\/doi.org\/10.2166\/hydro.2012.123","journal-title":"J. Hydroinform."},{"key":"42_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1007\/978-3-319-95168-3_14","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2018","author":"VJ Alarcon","year":"2018","unstructured":"Alarcon, V.J., Magrini, C.: Scenarios of sediment transport management in Francia Creek, Valparaiso, Chile. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10962, pp. 205\u2013218. Springer, Cham (2018). \n https:\/\/doi.org\/10.1007\/978-3-319-95168-3_14"},{"issue":"3","key":"42_CR12","doi-asserted-by":"publisher","first-page":"885","DOI":"10.13031\/2013.23153","volume":"50","author":"DN Moriasi","year":"2007","unstructured":"Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885\u2013900 (2007)","journal-title":"Trans. ASABE"},{"key":"42_CR13","doi-asserted-by":"publisher","first-page":"89","DOI":"10.5194\/adgeo-5-89-200","volume":"5","author":"P Krause","year":"2005","unstructured":"Krause, P., Boyle, D.P., B\u00e4se, F.: Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5, 89\u201397 (2005). \n https:\/\/doi.org\/10.5194\/adgeo-5-89-200","journal-title":"Adv. Geosci."}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2019"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-24302-9_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,4]],"date-time":"2019-09-04T16:10:55Z","timestamp":1567613455000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-24302-9_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030243012","9783030243029"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-24302-9_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"29 June 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Saint Petersburg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Russia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}