{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T06:01:14Z","timestamp":1726034474888},"publisher-location":"Cham","reference-count":29,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030242886"},{"type":"electronic","value":"9783030242893"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-24289-3_61","type":"book-chapter","created":{"date-parts":[[2019,6,28]],"date-time":"2019-06-28T15:03:03Z","timestamp":1561734183000},"page":"830-841","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Text Classification for Italian Proficiency Evaluation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4534-1805","authenticated-orcid":false,"given":"Alfredo","family":"Milani","sequence":"first","affiliation":[]},{"given":"Stefania","family":"Spina","sequence":"additional","affiliation":[]},{"given":"Valentino","family":"Santucci","sequence":"additional","affiliation":[]},{"given":"Luisa","family":"Piersanti","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Simonetti","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1854-2196","authenticated-orcid":false,"given":"Giulio","family":"Biondi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,6,29]]},"reference":[{"key":"61_CR1","unstructured":"Council of Europe Language Policy Portal. \n https:\/\/www.coe.int\/en\/web\/language-policy\/home"},{"key":"61_CR2","unstructured":"What is underfitting and overfitting and how to deal with it. \n https:\/\/medium.com\/greyatom\/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76"},{"key":"61_CR3","volume-title":"Language Assessment in Practice","author":"L Bachman","year":"2010","unstructured":"Bachman, L., Palmer, A.: Language Assessment in Practice. Oxford University Press, Oxford (2010)"},{"key":"61_CR4","doi-asserted-by":"publisher","unstructured":"Biondi, G., Franzoni, V., Li, Y., Milani, A.: Web-based similarity for emotion recognition in web objects. In: Proceedings of the 9th International Conference on Utility and Cloud Computing, UCC 2016, pp. 327\u2013332. ACM, New York (2016). \n https:\/\/doi.org\/10.1145\/2996890.3007883\n \n , \n http:\/\/doi.acm.org\/10.1145\/2996890.3007883","DOI":"10.1145\/2996890.3007883"},{"key":"61_CR5","doi-asserted-by":"publisher","first-page":"205","DOI":"10.4018\/978-1-60960-593-3.ch008","volume-title":"Semantic Services, Interoperability and Web Applications: Emerging Concepts","author":"C Bizer","year":"2011","unstructured":"Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. In: Sheth, A. (ed.) Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205\u2013227. IGI Global, Hershey (2011). \n https:\/\/doi.org\/10.4018\/978-1-60960-593-3.ch008"},{"key":"61_CR6","doi-asserted-by":"crossref","unstructured":"Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint \n arXiv:1607.04606\n \n (2016)","DOI":"10.1162\/tacl_a_00051"},{"key":"61_CR7","volume-title":"Classification and Regression Trees","author":"L Breiman","year":"1984","unstructured":"Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series. Taylor & Francis, Abingdon (1984)"},{"key":"61_CR8","doi-asserted-by":"publisher","unstructured":"Chiancone, A., Franzoni, V., Niyogi, R., Milani, A.: Improving link ranking quality by quasi-common neighbourhood, pp. 21\u201326. IEEE Press (2015). \n https:\/\/doi.org\/10.1109\/ICCSA.2015.19","DOI":"10.1109\/ICCSA.2015.19"},{"key":"61_CR9","unstructured":"De Mauro, T., Chiari, I.: Il Nuovo Vocabolario di Base della Lingua Italiana (forthcoming)"},{"key":"61_CR10","unstructured":"Dell\u2019Orletta, F., Montemagni, S., Venturi, G.: Read-it: Assessing readability of Italian texts with a view to text simplification. In: Proceedings of the Second Workshop on Speech and Language Processing for Assistive Technologies, pp. 73\u201383. Association for Computational Linguistics, Edinburgh, July 2011"},{"key":"61_CR11","unstructured":"European Commission\/EACEA\/Eurydice: Key Data on Teaching Languages at School in Europe. Eurydice European Unit, Brussels. Technical report (2017)"},{"key":"61_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1007\/978-3-319-21404-7_30","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2015","author":"V Franzoni","year":"2015","unstructured":"Franzoni, V., Leung, C.H.C., Li, Y., Mengoni, P., Milani, A.: Set similarity measures for images based on collective knowledge. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9155, pp. 408\u2013417. Springer, Cham (2015). \n https:\/\/doi.org\/10.1007\/978-3-319-21404-7_30"},{"key":"61_CR13","doi-asserted-by":"publisher","unstructured":"Franzoni, V., Li, Y., Mengoni, P.: A path-based model for emotion abstraction on Facebook using sentiment analysis and taxonomy knowledge, pp. 947\u2013952. IEEE Press (2017). \n https:\/\/doi.org\/10.1145\/3106426.3109420","DOI":"10.1145\/3106426.3109420"},{"key":"61_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1007\/978-3-319-09153-2_25","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2014","author":"V Franzoni","year":"2014","unstructured":"Franzoni, V., Mencacci, M., Mengoni, P., Milani, A.: Heuristics for semantic path search in Wikipedia. In: Murgante, B., et al. (eds.) ICCSA 2014, Part VI. LNCS, vol. 8584, pp. 327\u2013340. Springer, Cham (2014). \n https:\/\/doi.org\/10.1007\/978-3-319-09153-2_25"},{"key":"61_CR15","doi-asserted-by":"publisher","unstructured":"Franzoni, V., Milani, A.: PMING distance: a collaborative semantic proximity measure, vol. 2, pp. 442\u2013449. IEEE Press (2012) .\n https:\/\/doi.org\/10.1109\/WI-IAT.2012.226","DOI":"10.1109\/WI-IAT.2012.226"},{"key":"61_CR16","doi-asserted-by":"publisher","unstructured":"Franzoni, V., Milani, A., Pallottelli, S., Leung, C., Li, Y.: Context-based image semantic similarity, pp. 1280\u20131284. IEEE Press (2016). \n https:\/\/doi.org\/10.1109\/FSKD.2015.7382127","DOI":"10.1109\/FSKD.2015.7382127"},{"key":"61_CR17","doi-asserted-by":"publisher","first-page":"193","DOI":"10.3758\/BF03195564","volume":"36","author":"A Graesser","year":"2004","unstructured":"Graesser, A., McNamara, D., Louwerse, M., Cai, Z.: Coh-metrix: analysis of text on cohesion and language. Behav. Res. Methods Instrum. Comput. 36, 193\u2013202 (2004)","journal-title":"Behav. Res. Methods Instrum. Comput."},{"key":"61_CR18","series-title":"Springer Texts in Statistics","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4614-7138-7","volume-title":"An Introduction to Statistical Learning: With Applications in R","author":"G James","year":"2014","unstructured":"James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R. Springer Texts in Statistics. Springer, New York (2014). \n https:\/\/doi.org\/10.1007\/978-1-4614-7138-7"},{"key":"61_CR19","unstructured":"Kincaid, P., Fishburne, R.P., Rogers R.L.: Derivation of new readability formulas for navy enlisted personnel. Research Branch Report, pp. 8\u201375. Chief of Naval Training, Millington (1975)"},{"key":"61_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"657","DOI":"10.1007\/978-3-642-39649-6_47","volume-title":"Computational Science and Its Applications \u2013 ICCSA 2013","author":"CHC Leung","year":"2013","unstructured":"Leung, C.H.C., Li, Y., Milani, A., Franzoni, V.: Collective evolutionary concept distance based query expansion for effective web document retrieval. In: Murgante, B., et al. (eds.) ICCSA 2013, Part IV. LNCS, vol. 7974, pp. 657\u2013672. Springer, Heidelberg (2013). \n https:\/\/doi.org\/10.1007\/978-3-642-39649-6_47"},{"key":"61_CR21","doi-asserted-by":"crossref","unstructured":"Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55\u201360 (2014)","DOI":"10.3115\/v1\/P14-5010"},{"key":"61_CR22","unstructured":"Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 3111\u20133119. Curran Associates, Inc. (2013)"},{"key":"61_CR23","unstructured":"Palmero Aprosio, A., Moretti, G.: Italy goes to Stanford: a collection of CoreNLP modules for Italian. arXiv e-prints, September 2016"},{"key":"61_CR24","doi-asserted-by":"crossref","unstructured":"Purpura, J.: Cognition and language assessment. In: The Companion to Language Assessment, vol. III, pp. 1453\u20131476 (2014)","DOI":"10.1002\/9781118411360.wbcla150"},{"key":"61_CR25","doi-asserted-by":"publisher","first-page":"239","DOI":"10.4000\/books.aaccademia.4799","volume-title":"EVALITA Evaluation of NLP and Speech Tools for Italian","author":"Valentino Santucci","year":"2018","unstructured":"Santucci, V., Spina, S., Milani, A., Biondi, G., Bari, G.D.: Detecting hate speech for Italian language in social media (2018)"},{"key":"61_CR26","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781107298019","volume-title":"Understanding Machine Learning: From Theory to Algorithms","author":"S Shalev-Shwartz","year":"2014","unstructured":"Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)"},{"issue":"1","key":"61_CR27","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1186\/1471-2105-7-91","volume":"7","author":"S Varma","year":"2006","unstructured":"Varma, S., Simon, R.: Bias in error estimation when using cross-validation formodel selection. BMC Bioinformatics 7(1), 91 (2006). \n https:\/\/doi.org\/10.1186\/1471-2105-7-91","journal-title":"BMC Bioinformatics"},{"key":"61_CR28","unstructured":"Wainer, J., Cawley, G.C.: Nested cross-validation when selecting classifiers is overzealous for most practical applications. CoRR abs\/1809.09446 (2018)"},{"key":"61_CR29","unstructured":"Xiaobin, C., Meurers, D.: Ctap: a web-based tool supporting automatic complexity analysis. Research Branch Report, pp. 8\u201375. Chief of Naval Training, Millington (1975)"}],"container-title":["Lecture Notes in Computer Science","Computational Science and Its Applications \u2013 ICCSA 2019"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-24289-3_61","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,28]],"date-time":"2019-06-28T15:17:33Z","timestamp":1561735053000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-24289-3_61"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030242886","9783030242893"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-24289-3_61","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"29 June 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCSA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science and Its Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Saint Petersburg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Russia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccsa2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.iccsa.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}