{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T06:55:20Z","timestamp":1726037720007},"publisher-location":"Cham","reference-count":14,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030242671"},{"type":"electronic","value":"9783030242688"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-24268-8_1","type":"book-chapter","created":{"date-parts":[[2019,7,17]],"date-time":"2019-07-17T19:03:34Z","timestamp":1563390214000},"page":"3-12","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["A Gray-Box Vulnerability Discovery Model Based on Path Coverage"],"prefix":"10.1007","author":[{"given":"Chunlai","family":"Du","sequence":"first","affiliation":[]},{"given":"Xingbang","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Yanhui","family":"Guo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,7,11]]},"reference":[{"key":"1_CR1","unstructured":"Cui, J., Zhang, Y., Cai, Z., et al.: Securing display path for security-sensitive applications on mobile devices. Comput. Mater. Continua 55(1), 17\u201335 (2018)"},{"key":"1_CR2","doi-asserted-by":"crossref","unstructured":"Gan, S., Zhang, C., Qin, X., et al.: CollAFL: path sensitive fuzzing. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 679\u2013696. IEEE, San Francisco (2018)","DOI":"10.1109\/SP.2018.00040"},{"issue":"2","key":"1_CR3","first-page":"199","volume":"56","author":"L Chen","year":"2018","unstructured":"Chen, L., Yang, C., Liu, F., et al.: Automatic mining of security-sensitive functions from source code. Comput. Mater. Continua 56(2), 199\u2013210 (2018)","journal-title":"Comput. Mater. Continua"},{"key":"1_CR4","doi-asserted-by":"crossref","unstructured":"Copos, B., Murthy, P.: Inputfinder: reverse engineering closed binaries using hardware performance counters. In: 5th Program Protection and Reverse Engineering Workshop. ACM, Los Angeles (2015)","DOI":"10.1145\/2843859.2843865"},{"key":"1_CR5","doi-asserted-by":"crossref","unstructured":"Karg\u00e9n, U., Shahmehri, N.: Turning programs against each other: high coverage fuzz-testing using binary-code mutation and dynamic slicing. In: 2015 10th Joint Meeting on Foundations of Software Engineering, pp. 782\u2013792. ACM, Bergamo (2015)","DOI":"10.1145\/2786805.2786844"},{"key":"1_CR6","doi-asserted-by":"crossref","unstructured":"B\u00f6hme, M., Pham, V.-T., Roychoudhury, A.: Coverage-based greybox fuzzing as markov chain. In: 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1032\u20131043. ACM, Vienna (2016)","DOI":"10.1145\/2976749.2978428"},{"key":"1_CR7","doi-asserted-by":"crossref","unstructured":"Sparks, S., Embleton, S., Cunningham, R., et al.: Automated vulnerability analysis: leveraging control flow for evolutionary input crafting. In: 23th Annual Computer Security Applications Conference (ACSAC), pp. 477\u2013486, IEEE, Miami Beach (2007)","DOI":"10.1109\/ACSAC.2007.27"},{"key":"1_CR8","doi-asserted-by":"crossref","unstructured":"Chen, Y., Su, T., Sun, C., et al.: Coverage-directed differential testing of JVM implementations. In: 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 85\u201399. ACM, Santa Barbara (2016)","DOI":"10.1145\/2980983.2908095"},{"key":"1_CR9","doi-asserted-by":"crossref","unstructured":"Wang, T., Wei, T., Gu, G., et al.: TaintScope: a checksum-aware directed fuzzing tool for automatic software vulnerability detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 497\u2013512. IEEE, Berkeley (2010)","DOI":"10.1109\/SP.2010.37"},{"key":"1_CR10","unstructured":"Haller, I., Slowinska, A., Neugschwandtner, M., et al.: Dowsing for overflows: a guided fuzzer to find buffer boundary violations. In: 22th USENIX Security Symposium, pp. 49\u201364. USENIX, Washington, D.C. (2013)"},{"key":"1_CR11","doi-asserted-by":"crossref","unstructured":"Neugschwandtner, M., Milani Comparetti, P., Haller, I., et al.: The BORG: nanoprobing binaries for buffer overreads. In: 5th ACM Conference on Data and Application Security and Privacy, pp. 87\u201397. ACM, San Antonio (2015)","DOI":"10.1145\/2699026.2699098"},{"key":"1_CR12","doi-asserted-by":"crossref","unstructured":"Rawat, S., Jain, V., Kumar, A., et al.: Vuzzer: application-aware evolutionary fuzzing. In: The Network and Distributed System Security Symposium (NDSS), pp. 1\u201314. Internet Society, San Diego (2017)","DOI":"10.14722\/ndss.2017.23404"},{"key":"1_CR13","unstructured":"Schumilo, S., Aschermann, C., Gawlik, R., et al.: kAFL: hardware-assisted feedback fuzzing for OS kernels. In: 26th USENIX Security Symposium, pp. 167\u2013182. USENIX, Vancouver (2017)"},{"key":"1_CR14","doi-asserted-by":"crossref","unstructured":"Dolan-Gavitt, B., Hulin, P., et al.: Lava: large-scale automated vulnerability addition. In: 37th IEEE Symposium on Security and Privacy (SP), pp. 110\u2013121. IEEE, San Jose (2016)","DOI":"10.1109\/SP.2016.15"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence and Security"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-24268-8_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,7,17]],"date-time":"2019-07-17T19:05:17Z","timestamp":1563390317000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-24268-8_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030242671","9783030242688"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-24268-8_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"11 July 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICAIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Intelligence and Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New York, NY","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 July 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 July 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"incodldos2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icaisconf.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}