{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:27:13Z","timestamp":1726032433844},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030233662"},{"type":"electronic","value":"9783030233679"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-23367-9_4","type":"book-chapter","created":{"date-parts":[[2019,6,19]],"date-time":"2019-06-19T17:02:51Z","timestamp":1560963771000},"page":"39-53","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Pork Registration Using Skin Image with Deep Neural Network Features"],"prefix":"10.1007","author":[{"given":"Daohang","family":"Song","sequence":"first","affiliation":[]},{"given":"Cheng","family":"Cai","sequence":"additional","affiliation":[]},{"given":"Zeng","family":"Peng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,6,20]]},"reference":[{"key":"4_CR1","doi-asserted-by":"publisher","first-page":"318","DOI":"10.1016\/j.foodpol.2010.11.030","volume":"36","author":"DL Ortega","year":"2011","unstructured":"Ortega, D.L., Wang, H.H., Wu, L., Olynk, N.J.: Modeling heterogeneity in consumer preferences for select food safety attributes in China. Food Policy 36, 318 (2011)","journal-title":"Food Policy"},{"key":"4_CR2","doi-asserted-by":"publisher","first-page":"186","DOI":"10.1016\/j.meatsci.2018.04.030","volume":"144","author":"HA Channon","year":"2018","unstructured":"Channon, H.A., et al.: Guaranteeing the quality and integrity of pork\u2013an Australian case study. Meat Sci. 144, 186\u2013192 (2018)","journal-title":"Meat Sci."},{"key":"4_CR3","doi-asserted-by":"publisher","first-page":"1419","DOI":"10.3389\/fpls.2016.01419","volume":"7","author":"SP Mohanty","year":"2016","unstructured":"Mohanty, S.P., Hughes, D.P., Salath\u00e9, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)","journal-title":"Front. Plant Sci."},{"key":"4_CR4","first-page":"211","volume":"15","author":"S Arivazhagan","year":"2013","unstructured":"Arivazhagan, S., Shebiah, R.N., Ananthi, S., Varthini, S.V.: Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15, 211 (2013)","journal-title":"Agric. Eng. Int. CIGR J."},{"key":"4_CR5","unstructured":"Duindam, V., Chopra, P.: Systems and methods for registration of a medical device using a reduced search space. Google Patents (2018)"},{"key":"4_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S1361-8415(01)80026-8","volume":"2","author":"JA Maintz","year":"1998","unstructured":"Maintz, J.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2, 1 (1998)","journal-title":"Med. Image Anal."},{"key":"4_CR7","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1177\/1526602816660327","volume":"23","author":"CJ Schulz","year":"2016","unstructured":"Schulz, C.J., Schmitt, M., B\u00f6ckler, D., Geisb\u00fcsch, P.: Fusion imaging to support endovascular aneurysm repair using 3D-3D registration. J. Endovasc. Ther. 23, 791 (2016)","journal-title":"J. Endovasc. Ther."},{"key":"4_CR8","doi-asserted-by":"publisher","first-page":"6469","DOI":"10.1109\/TGRS.2015.2441954","volume":"53","author":"J Ma","year":"2015","unstructured":"Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., Tian, J.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53, 6469 (2015)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"4_CR9","doi-asserted-by":"publisher","first-page":"926","DOI":"10.1049\/el.2018.1187","volume":"54","author":"L Shen","year":"2018","unstructured":"Shen, L., Huang, X., Fan, C., Li, Y.: Enhanced mutual information-based medical image registration using a hybrid optimisation technique. Electron. Lett. 54, 926 (2018)","journal-title":"Electron. Lett."},{"key":"4_CR10","doi-asserted-by":"crossref","unstructured":"Nasihatkon, B., Fejne, F., Kahl, F.: Globally optimal rigid intensity based registration: a fast fourier domain approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 5936 (2016)","DOI":"10.1109\/CVPR.2016.639"},{"key":"4_CR11","doi-asserted-by":"publisher","first-page":"4869","DOI":"10.1109\/JSTARS.2017.2734052","volume":"10","author":"A Ordonez","year":"2017","unstructured":"Ordonez, A., Arguello, F., Heras, D.B.: GPU accelerated FFT-based registration of hyperspectral scenes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 4869 (2017)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"4_CR12","first-page":"2960","volume":"21","author":"X Yu","year":"2015","unstructured":"Yu, X., Lu, Z., Hu, D.: Review of remote sensing image registration techniques. Opt. Precis. Eng. 21, 2960 (2015)","journal-title":"Opt. Precis. Eng."},{"key":"4_CR13","doi-asserted-by":"crossref","unstructured":"Lowe, D.G.: Object recognition from local scale-invariant features, vol. 2, pp. 1150. IEEE (1999)","DOI":"10.1109\/ICCV.1999.790410"},{"key":"4_CR14","doi-asserted-by":"publisher","first-page":"292","DOI":"10.2174\/1573405614666180103163430","volume":"15","author":"V Aggarwal","year":"2019","unstructured":"Aggarwal, V., Gupta, A.: Integrating morphological edge detection and mutual information for nonrigid registration of medical images. Curr. Med. Imaging Rev. 15, 292 (2019)","journal-title":"Curr. Med. Imaging Rev."},{"key":"4_CR15","first-page":"1","volume":"99","author":"X Zhu","year":"2018","unstructured":"Zhu, X., Cao, H., Zhang, Y., Tan, K., Ling, X.: Fine registration for VHR images based on superpixel registration-noise estimation. IEEE Geosci. Remote Sens. Lett. 99, 1 (2018)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"4_CR16","doi-asserted-by":"publisher","first-page":"346","DOI":"10.1016\/j.cviu.2007.09.014","volume":"110","author":"H Bay","year":"2008","unstructured":"Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110, 346 (2008)","journal-title":"Comput. Vis. Image Underst."},{"key":"4_CR17","doi-asserted-by":"publisher","first-page":"438","DOI":"10.1137\/080732730","volume":"2","author":"J Morel","year":"2009","unstructured":"Morel, J., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2, 438 (2009)","journal-title":"SIAM J. Imaging Sci."},{"key":"4_CR18","unstructured":"Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors, vol. 2, pp. II. IEEE (2004)"},{"key":"4_CR19","first-page":"1","volume":"3","author":"FR Bach","year":"2002","unstructured":"Bach, F.R., Jordan, M.I.: Kernel independent component analysis. J. Mach. Learn. Res. 3, 1 (2002)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR20","doi-asserted-by":"crossref","unstructured":"Liu, X., Tian, Z., Leng, C., Duan, X.: Remote sensing image registration based on KICA-SIFT descriptors. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 278. IEEE (2010)","DOI":"10.1109\/FSKD.2010.5569671"},{"key":"4_CR21","first-page":"14","volume":"10","author":"W Wu","year":"2009","unstructured":"Wu, W., Zhao, W., Liu, H.: Overview of remote sensing digital image registration technology. Infrared 10, 14 (2009)","journal-title":"Infrared"},{"key":"4_CR22","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1016\/j.cviu.2018.01.008","volume":"169","author":"M Saval-Calvo","year":"2018","unstructured":"Saval-Calvo, M., Azorin-Lopez, J., Fuster-Guillo, A., Villena-Martinez, V., Fisher, R.B.: 3D non-rigid registration using color: color coherent point drift. Comput. Vis. Image Underst. 169, 119 (2018)","journal-title":"Comput. Vis. Image Underst."},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, vol. 248. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"4_CR24","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"4_CR25","doi-asserted-by":"publisher","first-page":"567","DOI":"10.1109\/34.24792","volume":"11","author":"FL Bookstein","year":"1989","unstructured":"Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11, 567 (1989)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"4_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1007\/978-3-030-01950-1_13","volume-title":"Information and Communications Security","author":"M Zheng","year":"2018","unstructured":"Zheng, M., Zhou, J., Cao, Z., Dong, X.: PPOIM: privacy-preserving shape context based image denoising and matching with efficient outsourcing. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 215\u2013231. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01950-1_13"},{"key":"4_CR27","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.patrec.2016.07.024","volume":"87","author":"W Jones","year":"2017","unstructured":"Jones, W., Chawdhary, A., King, A.: Optimising the Volgenant-Jonker algorithm for approximating graph edit distance. Pattern Recogn. Lett. 87, 47 (2017)","journal-title":"Pattern Recogn. Lett."},{"key":"4_CR28","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1016\/j.ins.2017.07.010","volume":"417","author":"J Ma","year":"2017","unstructured":"Ma, J., Jiang, J., Liu, C., Li, Y.: Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration. Inf. Sci. 417, 128 (2017)","journal-title":"Inf. Sci."},{"key":"4_CR29","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1186\/s13634-016-0435-y","volume":"1","author":"C Lin","year":"2017","unstructured":"Lin, C., Tai, Y., Lee, J., Chen, Y.: A novel point cloud registration using 2D image features. EURASIP J. Adv. Sig. Process. 1, 5 (2017)","journal-title":"EURASIP J. Adv. Sig. Process."},{"key":"4_CR30","first-page":"88","volume":"40","author":"RR Bhavani","year":"2018","unstructured":"Bhavani, R.R., Wiselin Jiji, G.: Image registration for varicose ulcer classification using KNN classifier. Int. J. Comput. Appl. 40, 88 (2018)","journal-title":"Int. J. Comput. Appl."}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence and Mobile Services \u2013 AIMS 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-23367-9_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,19]],"date-time":"2023-06-19T00:07:29Z","timestamp":1687133249000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-23367-9_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030233662","9783030233679"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-23367-9_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"20 June 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIMS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on AI and Mobile Services","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"San Diego, CA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aimse2019a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ai1000.org\/2019\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}