{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:34:53Z","timestamp":1726032893854},"publisher-location":"Cham","reference-count":27,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030227463"},{"type":"electronic","value":"9783030227470"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-22747-0_3","type":"book-chapter","created":{"date-parts":[[2019,6,19]],"date-time":"2019-06-19T05:19:00Z","timestamp":1560921540000},"page":"31-44","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Efficient Parallel Associative Classification Based on Rules Memoization"],"prefix":"10.1007","author":[{"given":"Michel","family":"Pires","sequence":"first","affiliation":[]},{"given":"Nicollas","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Leonardo","family":"Rocha","sequence":"additional","affiliation":[]},{"given":"Wagner","family":"Meira","sequence":"additional","affiliation":[]},{"given":"Renato","family":"Ferreira","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,6,8]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","unstructured":"Agrawal, R., Imieli\u0144ski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. SIGMOD 1993, pp. 207\u2013216. ACM, New York (1993). https:\/\/doi.org\/10.1145\/170035.170072","DOI":"10.1145\/170035.170072"},{"issue":"4","key":"3_CR2","doi-asserted-by":"publisher","first-page":"1821","DOI":"10.1007\/s10586-018-2812-9","volume":"21","author":"M Almasi","year":"2018","unstructured":"Almasi, M., Abadeh, M.S.: A new MapReduce associative classifier based on a new storage format for large-scale imbalanced data. Cluster Comput. 21(4), 1821\u20131847 (2018). https:\/\/doi.org\/10.1007\/s10586-018-2812-9","journal-title":"Cluster Comput."},{"issue":"18","key":"3_CR3","doi-asserted-by":"publisher","first-page":"5686","DOI":"10.1002\/cpe.3595","volume":"27","author":"Q Althebyan","year":"2015","unstructured":"Althebyan, Q., Jararweh, Y., Yaseen, Q., AlQudah, O., Al-Ayyoub, M.: Evaluating map reduce tasks scheduling algorithms over cloud computing infrastructure. Concurrency Comput.: Pract. Exp. 27(18), 5686\u20135699 (2015). https:\/\/doi.org\/10.1002\/cpe.3595","journal-title":"Concurrency Comput.: Pract. Exp."},{"issue":"4","key":"3_CR4","doi-asserted-by":"publisher","first-page":"2086","DOI":"10.1016\/j.eswa.2014.09.021","volume":"42","author":"M Antonelli","year":"2015","unstructured":"Antonelli, M., Ducange, P., Marcelloni, F., Segatori, A.: A novel associative classification model based on a fuzzy frequent pattern mining algorithm. Expert Syst. Appl. 42(4), 2086\u20132097 (2015). https:\/\/doi.org\/10.1016\/j.eswa.2014.09.021. http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0957417414005600","journal-title":"Expert Syst. Appl."},{"key":"3_CR5","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.ins.2015.10.041","volume":"332","author":"A Bechini","year":"2016","unstructured":"Bechini, A., Marcelloni, F., Segatori, A.: A MapReduce solution for associative classification of big data. Inf. Sci. 332, 33\u201355 (2016). https:\/\/doi.org\/10.1016\/j.ins.2015.10.041","journal-title":"Inf. Sci."},{"key":"3_CR6","doi-asserted-by":"publisher","unstructured":"Cheng, D., Rao, J., Guo, Y., Zhou, X.: Improving MapReduce performance in heterogeneous environments with adaptive task tuning. In: Proceedings of the 15th International Middleware Conference. Middleware 2014, pp. 97\u2013108. ACM, New York (2014). https:\/\/doi.org\/10.1145\/2663165.2666089","DOI":"10.1145\/2663165.2666089"},{"issue":"1","key":"3_CR7","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1145\/1327452.1327492","volume":"51","author":"J Dean","year":"2008","unstructured":"Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107\u2013113 (2008). https:\/\/doi.org\/10.1145\/1327452.1327492","journal-title":"Commun. ACM"},{"key":"3_CR8","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1007\/3-540-46846-3_4","volume-title":"Discovery Science","author":"G Dong","year":"1999","unstructured":"Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: classification by aggregating emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 30\u201342. Springer, Heidelberg (1999). https:\/\/doi.org\/10.1007\/3-540-46846-3_4"},{"key":"3_CR9","doi-asserted-by":"publisher","unstructured":"Ducange, P., Marcelloni, F., Segatori, A.: A MapReduce-based fuzzy associative classifier for big data. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), August, pp. 1\u20138 (2015). https:\/\/doi.org\/10.1109\/FUZZ-IEEE.2015.7337868","DOI":"10.1109\/FUZZ-IEEE.2015.7337868"},{"issue":"1","key":"3_CR10","first-page":"146","volume":"17","author":"JV Gautam","year":"2017","unstructured":"Gautam, J.V., Prajapati, H.B., Dabhi, V.K., Chaudhary, S.: Empirical study of job scheduling algorithms in hadoop MapReduce. Cybern. Inf. Technol. 17(1), 146\u2013163 (2017). https:\/\/content.sciendo.com\/view\/journals\/cait\/17\/1\/article-p146.xml","journal-title":"Cybern. Inf. Technol."},{"key":"3_CR11","doi-asserted-by":"publisher","unstructured":"Guo, Z., Fox, G., Zhou, M.: Investigation of data locality in MapReduce. In: 2012 12th IEEE\/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012), May, pp. 419\u2013426 (2012). https:\/\/doi.org\/10.1109\/CCGrid.2012.42","DOI":"10.1109\/CCGrid.2012.42"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Lakshmi, K.P., Reddy, C.R.K.: Fast rule-based prediction of data streams using associative classification mining. In: 2015 5th International Conference on IT Convergence and Security (ICITCS), pp. 1\u20135. IEEE (2015)","DOI":"10.1109\/ICITCS.2015.7292983"},{"key":"3_CR13","unstructured":"Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Proceedings of the 2001 IEEE International Conference on Data Mining. ICDM 2001, pp. 369\u2013376. IEEE Computer Society, Washington, DC (2001). http:\/\/dl.acm.org\/citation.cfm?id=645496.657866"},{"key":"3_CR14","doi-asserted-by":"publisher","unstructured":"Lin, C., Guo, W., Lin, C.: Self-learning MapReduce scheduler in multi-job environment. In: 2013 International Conference on Cloud Computing and Big Data, December, pp. 610\u2013612 (2013). https:\/\/doi.org\/10.1109\/CLOUDCOM-ASIA.2013.95","DOI":"10.1109\/CLOUDCOM-ASIA.2013.95"},{"key":"3_CR15","unstructured":"Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: 1998 Knowledge Discovery and Data Mining Conference (KDD), pp. 80\u201386 (1998)"},{"key":"3_CR16","doi-asserted-by":"publisher","unstructured":"Qureshi, M.N., Aldheleai, H.F.H., Tamandani, Y.K.: An improved documents classification technique using association rules mining. In: 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), November, pp. 460\u2013465 (2015). https:\/\/doi.org\/10.1109\/ICRCICN.2015.7434283","DOI":"10.1109\/ICRCICN.2015.7434283"},{"key":"3_CR17","doi-asserted-by":"publisher","unstructured":"Thabtah, F., Cowling, P., Peng, Y.: MCAR: multi-class classification based on association rule. In: The 3rd ACS\/IEEE International Conference on Computer Systems and Applications, January (2005). https:\/\/doi.org\/10.1109\/AICCSA.2005.1387030","DOI":"10.1109\/AICCSA.2005.1387030"},{"issue":"02","key":"3_CR18","doi-asserted-by":"publisher","first-page":"1550002","DOI":"10.1142\/S0129626415500024","volume":"25","author":"F Thabtah","year":"2015","unstructured":"Thabtah, F., Hammoud, S.: Parallel associative classification data mining frameworks based MapReduce. Parallel Process. 25(02), 1550002 (2015)","journal-title":"Parallel Process."},{"issue":"13","key":"3_CR19","doi-asserted-by":"publisher","first-page":"2656","DOI":"10.1016\/j.ins.2010.03.007","volume":"181","author":"A Veloso","year":"2011","unstructured":"Veloso, A., Meira, W., Gon\u00e7alves, M., Almeida, H.M., Zaki, M.: Calibrated lazy associative classification. Inf. Sci. 181(13), 2656\u20132670 (2011). https:\/\/doi.org\/10.1016\/j.ins.2010.03.007. http:\/\/www.sciencedirect.com\/science\/article\/pii\/S0020025510001192. Including Special Section on Databases and Software Engineering","journal-title":"Inf. Sci."},{"issue":"13","key":"3_CR20","doi-asserted-by":"publisher","first-page":"2656","DOI":"10.1016\/j.ins.2010.03.007","volume":"181","author":"A Veloso","year":"2011","unstructured":"Veloso, A., Meira Jr., W., Gon\u00e7alves, M., Almeida, H.M., Zaki, M.: Calibrated lazy associative classification. Inf. Sci. 181(13), 2656\u20132670 (2011)","journal-title":"Inf. Sci."},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Veloso, A., Meira Jr, W., Zaki, M.J.: Lazy associative classification. In: ICDM 2006: Proceedings of the Sixth International Conference on Data Mining, December, pp. 645\u2013654. IEEE Computer Society (2006)","DOI":"10.1109\/ICDM.2006.96"},{"key":"3_CR22","unstructured":"Veloso, A.A.: Classifica\u00e7\u00e3o Associativa sob Demanda. Ph.D. thesis, Universidade Federal de Minas Gerais, March 2009"},{"issue":"1","key":"3_CR23","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1007\/s10586-015-0503-3","volume":"19","author":"J Wang","year":"2016","unstructured":"Wang, J., Li, X.: Task scheduling for MapReduce in heterogeneous networks. Cluster Comput. 19(1), 197\u2013210 (2016). https:\/\/doi.org\/10.1007\/s10586-015-0503-3","journal-title":"Cluster Comput."},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Wang, J., Karypis, G.: Harmony: efficiently mining the best rules for classification. In: Proceedings of SDM, pp. 205\u2013216 (2005)","DOI":"10.21236\/ADA439469"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: Proceedings of the International Conference on Data Mining. SIAM (2003)","DOI":"10.1137\/1.9781611972733.40"},{"issue":"11","key":"3_CR26","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1145\/2934664","volume":"59","author":"M Zaharia","year":"2016","unstructured":"Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56\u201365 (2016). https:\/\/doi.org\/10.1145\/2934664","journal-title":"Commun. ACM"},{"issue":"1","key":"3_CR27","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1109\/TST.2014.6733207","volume":"19","author":"Y Zhao","year":"2014","unstructured":"Zhao, Y., Wu, J., Liu, C.: Dache: a data aware caching for big-data applications using the MapReduce framework. Tsinghua Sci. Technol. 19(1), 39\u201350 (2014). https:\/\/doi.org\/10.1109\/TST.2014.6733207","journal-title":"Tsinghua Sci. Technol."}],"container-title":["Lecture Notes in Computer Science","Computational Science \u2013 ICCS 2019"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-22747-0_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,6]],"date-time":"2023-06-06T23:53:17Z","timestamp":1686095597000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-22747-0_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030227463","9783030227470"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-22747-0_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"8 June 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Faro","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccs-computsci2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iccs-meeting.org\/iccs2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}