{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T04:46:42Z","timestamp":1726030002761},"publisher-location":"Cham","reference-count":35,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030208691"},{"type":"electronic","value":"9783030208707"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-20870-7_22","type":"book-chapter","created":{"date-parts":[[2019,5,24]],"date-time":"2019-05-24T16:14:21Z","timestamp":1558714461000},"page":"354-369","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Gated Transfer Network for Transfer Learning"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6482-6712","authenticated-orcid":false,"given":"Yi","family":"Zhu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7153-0568","authenticated-orcid":false,"given":"Jia","family":"Xue","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6803-5291","authenticated-orcid":false,"given":"Shawn","family":"Newsam","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,25]]},"reference":[{"key":"22_CR1","unstructured":"FashionAI Global Challenge: Make AI Insight to Fashion. fashionai.alibaba.com\/ (2018)"},{"key":"22_CR2","doi-asserted-by":"crossref","unstructured":"Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)","DOI":"10.1109\/CVPR.2015.7298970"},{"key":"22_CR3","doi-asserted-by":"crossref","unstructured":"Branson, S., Horn, G.V., Belongie, S., Perona, P.: Bird species categorization using pose normalized deep convolutional nets. In: British Machine Vision Conference (BMVC) (2014)","DOI":"10.5244\/C.28.87"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)","DOI":"10.1109\/CVPR.2014.461"},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)","DOI":"10.1109\/CVPR.2015.7299007"},{"key":"22_CR6","doi-asserted-by":"crossref","unstructured":"Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00432"},{"key":"22_CR7","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"22_CR8","doi-asserted-by":"crossref","unstructured":"Ge, W., Yu, Y.: Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPR.2017.9"},{"key":"22_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"392","DOI":"10.1007\/978-3-319-10584-0_26","volume-title":"Computer Vision \u2013 ECCV 2014","author":"Y Gong","year":"2014","unstructured":"Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392\u2013407. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10584-0_26"},{"key":"22_CR10","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"22_CR12","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"22_CR13","doi-asserted-by":"crossref","unstructured":"Lan, Z., Zhu, Y., Hauptmann, A.G., Newsam, S.: Deep local video feature for action recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPRW.2017.161"},{"key":"22_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"614","DOI":"10.1007\/978-3-319-46493-0_37","volume-title":"Computer Vision \u2013 ECCV 2016","author":"Z Li","year":"2016","unstructured":"Li, Z., Hoiem, D.: Learning without forgetting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 614\u2013629. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46493-0_37"},{"key":"22_CR15","doi-asserted-by":"crossref","unstructured":"Liu, J., Wang, Y., Qiao, Y.: Sparse deep transfer learning for convolutional neural network. In: Association for the Advancement of Artificial Intelligence (AAAI) (2017)","DOI":"10.1609\/aaai.v31i1.10801"},{"key":"22_CR16","doi-asserted-by":"crossref","unstructured":"Miao, X., Zhen, X., Liu, X., Deng, C., Athitsos, V., Huang, H.: Direct shape regression networks for end-to-end face alignment. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00529"},{"key":"22_CR17","doi-asserted-by":"crossref","unstructured":"Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)","DOI":"10.1109\/CVPR.2014.222"},{"key":"22_CR18","doi-asserted-by":"crossref","unstructured":"Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)","DOI":"10.1109\/CVPR.2009.5206537"},{"key":"22_CR19","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)"},{"key":"22_CR20","unstructured":"Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human action classes from videos in the wild. In: CRCV-TR-12-01 (2012)"},{"key":"22_CR21","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (JMLR) 15, 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res. (JMLR)"},{"key":"22_CR22","doi-asserted-by":"crossref","unstructured":"Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: International Conference on Computer Vision (ICCV) (2017)","DOI":"10.1109\/ICCV.2017.97"},{"key":"22_CR23","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"22_CR24","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)","DOI":"10.1109\/CVPR.2016.308"},{"issue":"1","key":"22_CR25","first-page":"3221","volume":"15","author":"L Van Der Maaten","year":"2014","unstructured":"Van Der Maaten, L.: Accelerating T-SNE using tree-based algorithms. J. Mach. Learn. Res. (JMLR) 15(1), 3221\u20133245 (2014)","journal-title":"J. Mach. Learn. Res. (JMLR)"},{"key":"22_CR26","unstructured":"Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset (2011)"},{"key":"22_CR27","doi-asserted-by":"crossref","unstructured":"Wang, Y.X., Ramanan, D., Hebert, M.: Growing a brain: fine-tuning by increasing model capacity. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPR.2017.323"},{"key":"22_CR28","doi-asserted-by":"crossref","unstructured":"Xue, J., Zhang, H., Dana, K.: Deep texture manifold for ground terrain recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00065"},{"key":"22_CR29","unstructured":"Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Neural Information Processing Systems (NIPS) (2014)"},{"key":"22_CR30","doi-asserted-by":"crossref","unstructured":"Zhang, H., Xue, J., Dana, K.: Deep TEN: texture encoding network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)","DOI":"10.1109\/CVPR.2017.309"},{"key":"22_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1007\/978-3-319-10590-1_54","volume-title":"Computer Vision \u2013 ECCV 2014","author":"N Zhang","year":"2014","unstructured":"Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834\u2013849. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10590-1_54"},{"key":"22_CR32","unstructured":"Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Neural Information Processing Systems (NIPS) (2014)"},{"key":"22_CR33","unstructured":"Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A.G.: Hidden two-stream convolutional networks for action recognition. In: Asian Conference on Computer Vision (ACCV) (2018)"},{"key":"22_CR34","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)","DOI":"10.1109\/CVPR.2018.00983"},{"key":"22_CR35","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"668","DOI":"10.1007\/978-3-319-46604-0_47","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"Y Zhu","year":"2016","unstructured":"Zhu, Y., Newsam, S.: Depth2Action: exploring embedded depth for large-scale action recognition. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 668\u2013684. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46604-0_47"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ACCV 2018"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-20870-7_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,18]],"date-time":"2022-09-18T16:19:36Z","timestamp":1663517976000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-20870-7_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030208691","9783030208707"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-20870-7_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"25 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ACCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asian Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Perth, WA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Australia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 December 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 December 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"accv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/accv2018.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"979","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"274","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.7","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}