{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:00:43Z","timestamp":1726030843496},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030205201"},{"type":"electronic","value":"9783030205218"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-20521-8_66","type":"book-chapter","created":{"date-parts":[[2019,6,4]],"date-time":"2019-06-04T23:02:40Z","timestamp":1559689360000},"page":"806-817","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["A Deep Ensemble Neural Network Approach to Improve Predictions of Container Inspection Volume"],"prefix":"10.1007","author":[{"given":"Daniel","family":"Urda Mu\u00f1oz","sequence":"first","affiliation":[]},{"given":"Juan Jesus","family":"Ruiz-Aguilar","sequence":"additional","affiliation":[]},{"given":"Javier","family":"Gonz\u00e1lez-Enrique","sequence":"additional","affiliation":[]},{"given":"Ignacio J.","family":"Turias Dom\u00ednguez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,16]]},"reference":[{"key":"66_CR1","unstructured":"Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl. 105(9), 17\u201324 (2014). Full text available"},{"key":"66_CR2","unstructured":"Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A Modular Framework for Model-Based Optimization of Expensive Black-Box Functions. http:\/\/arxiv.org\/abs\/1703.03373"},{"key":"66_CR3","volume-title":"Time Series Analysis, Forecasting and Control","author":"GEP Box","year":"1990","unstructured":"Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day Inc, San Francisco (1990)"},{"key":"66_CR4","doi-asserted-by":"crossref","unstructured":"Chollet, F., Allaire, J., et al.: R interface to keras (2017). https:\/\/github.com\/rstudio\/keras","DOI":"10.32614\/CRAN.package.keras"},{"key":"66_CR5","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs\/1502.03167 (2015). http:\/\/arxiv.org\/abs\/1502.03167"},{"key":"66_CR6","unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs\/1412.6980 (2014). http:\/\/arxiv.org\/abs\/1412.6980"},{"key":"66_CR7","unstructured":"Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 2, pp. 1137\u20131143 (1995)"},{"key":"66_CR8","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1016\/j.trpro.2016.12.015","volume":"18","author":"J.A. Moscoso-L\u00f3pez","year":"2016","unstructured":"Moscoso-L\u00f3pez, J., Turias, I., Come, M., Ruiz-Aguilar, J., Cerb\u00e1n, M.: Short-term forecasting of intermodal freight using ANNs and SVR: Case of the Port of Algeciras Bay. Transp. Res. Procedia 18, 108 \u2013114 (2016). https:\/\/doi.org\/10.1016\/j.trpro.2016.12.015 , http:\/\/www.sciencedirect.com\/science\/article\/pii\/S2352146516307700 . Efficient, Safe and Intelligent Transport. Selected papers from the XIIConference on Transport Engineering, Valencia (Spain) 7-9 June","journal-title":"Transportation Research Procedia"},{"issue":"2","key":"66_CR9","doi-asserted-by":"publisher","first-page":"642","DOI":"10.1111\/itor.12337","volume":"26","author":"Jos\u00e9 Antonio Moscoso-L\u00f3pez","year":"2016","unstructured":"Moscoso-L\u00f3pez, J.A., Turias, I., Jim\u00e9nez-Come, M.J., Ruiz-Aguilar, J.J., Cerb\u00e1n, M.D.M.: A two-stage forecasting approach for short-term intermodal freight prediction. Int. Trans. Oper. Res. 26(2), 642\u2013666 (2019). https:\/\/doi.org\/10.1111\/itor.12337","journal-title":"International Transactions in Operational Research"},{"key":"66_CR10","unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, pp. 807\u2013814 (2010)"},{"key":"66_CR11","unstructured":"Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W.: Applied Linear Statistical Models. Irwin (1996)"},{"key":"66_CR12","unstructured":"R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https:\/\/www.R-project.org\/"},{"issue":"5","key":"66_CR13","doi-asserted-by":"publisher","first-page":"1906","DOI":"10.1111\/itor.12397","volume":"26","author":"Juan\u2010Jes\u00fas Ruiz\u2010Aguilar","year":"2017","unstructured":"Ruiz-Aguilar, J.J., Turias, I., Moscoso-L\u00f3pez, J.A., Jim\u00e9nez-Come, M.J., Cerb\u00e1n-Jim\u00e9nez, M.: Efficient goods inspection demand at ports: a comparative forecasting approach. Int. Trans. Oper. Res. https:\/\/doi.org\/10.1111\/itor.12397","journal-title":"International Transactions in Operational Research"},{"issue":"195","key":"66_CR14","doi-asserted-by":"publisher","first-page":"163","DOI":"10.15446\/dyna.v83n195.47027","volume":"83","author":"Juan Jes\u00fas Ruiz Aguilar","year":"2016","unstructured":"Ruiz Aguilar, J.J., Turias, I., Moscoso L\u00f3pez, J.A., Jim\u00e9nez, M., Cer\u00e1bn, M.D.M.: Forecasting of short-term flow freight congestion: a study case of Algeciras Bay Port (Spain). DYNA 83(195), 163\u2013172 (2016). https:\/\/doi.org\/10.15446\/dyna.v83n195.47027","journal-title":"DYNA"},{"issue":"1","key":"66_CR15","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"66_CR16","first-page":"8","volume":"4","author":"D Steenken","year":"2003","unstructured":"Steenken, D.: Optimised vehicle routing at a seaport container terminal. Orbit 4, 8\u201314 (2003)","journal-title":"Orbit"},{"key":"66_CR17","unstructured":"Wold, S., Ruhe, A., Wold, H., Dunn III, W.: The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735\u2013743 (1984)"}],"container-title":["Lecture Notes in Computer Science","Advances in Computational Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-20521-8_66","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,19]],"date-time":"2024-07-19T04:30:53Z","timestamp":1721363453000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-20521-8_66"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030205201","9783030205218"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-20521-8_66","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"16 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwann.uma.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"210","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"150","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"71% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}