{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:01:35Z","timestamp":1726030895640},"publisher-location":"Cham","reference-count":13,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030205171"},{"type":"electronic","value":"9783030205188"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-20518-8_62","type":"book-chapter","created":{"date-parts":[[2019,6,4]],"date-time":"2019-06-04T19:02:40Z","timestamp":1559674960000},"page":"747-759","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Impact of Genetic Algorithms Operators on Association Rules Extraction"],"prefix":"10.1007","author":[{"given":"Leila","family":"Hamdad","sequence":"first","affiliation":[]},{"given":"Karima","family":"Benatchba","sequence":"additional","affiliation":[]},{"given":"Ahcene","family":"Bendjoudi","sequence":"additional","affiliation":[]},{"given":"Zakaria","family":"Ournani","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,16]]},"reference":[{"key":"62_CR1","unstructured":"Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference Very Large Data Bases, VLDB, vol. 1215, pp. 487\u2013499 (1994)"},{"key":"62_CR2","unstructured":"Bacha, K., Lichman, M.: UCI machine learning repository. \n https:\/\/archive.ics.uci.edu\/ml\/datasets.html\n \n . Accessed 20 Apr 2016"},{"key":"62_CR3","unstructured":"Bruno, E.: Building multi-core ready java applications (2008). \n https:\/\/dzone.com\/articles\/building-multi-core-ready-java\n \n . Accessed 13 Apr 2016"},{"issue":"4","key":"62_CR4","doi-asserted-by":"publisher","first-page":"1318","DOI":"10.1007\/s11227-014-1366-8","volume":"71","author":"Y Djenouri","year":"2015","unstructured":"Djenouri, Y., Bendjoudi, A., Mahdi, M., et al.: GPU-based bees swarm optimization for association rules mining. J. Supercomput. 71(4), 1318\u20131344 (2015)","journal-title":"J. Supercomput."},{"key":"62_CR5","unstructured":"Indira, K., Kanmani, S.: Performance analysis of genetic algorithm for mining association rules. Int. J. Comput. Sci. Issues 9(2) (2012)"},{"key":"62_CR6","unstructured":"Jourdan, L.: M\u00e9taheuristiques pour l\u2019extraction de connaissances: Application \u00e0 la g\u00e9nomique. Universit\u00e9 des Sciences et Technologie de Lille I, Ph.D. (2003)"},{"key":"62_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/978-3-319-26535-3_16","volume-title":"Neural Information Processing","author":"MMJ Kabir","year":"2015","unstructured":"Kabir, M.M.J., Xu, S., Kang, B.H., Zhao, Z.: A new evolutionary algorithm for extracting a reduced set of interesting association rules. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 133\u2013142. Springer, Cham (2015). \n https:\/\/doi.org\/10.1007\/978-3-319-26535-3_16"},{"issue":"1","key":"62_CR8","doi-asserted-by":"publisher","first-page":"326","DOI":"10.1016\/j.asoc.2009.11.023","volume":"11","author":"RJ Kuo","year":"2011","unstructured":"Kuo, R.J., Chao, C.M., Chiu, Y.T.: Application of particle swarm optimization to association rule mining. Appl. Soft Comput. 11(1), 326\u2013336 (2011)","journal-title":"Appl. Soft Comput."},{"key":"62_CR9","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1007\/978-3-7091-6230-9_65","volume-title":"Artificial Neural Nets and Genetic Algorithms","author":"J Mata","year":"2001","unstructured":"Mata, J., Alvarez, J.L., Riquelme, J.C.: Mining numeric association rules with genetic algorithms. In: Kurkov\u00e1, V., Neruda, R., K\u00e1rn\u00fd, M., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 264\u2013267. Springer, Vienna (2001). \n https:\/\/doi.org\/10.1007\/978-3-7091-6230-9_65"},{"key":"62_CR10","unstructured":"Moslehi, P., Bidgoli, B.M., Nasiri, M., Salajegheh, A.: Multi-objective numeric association rules mining via ant colony optimization for continuous domains without specifying minimum support and minimum confidence. Int. J. Comput. Sci. Issues (IJCSI) 8 (2011)"},{"key":"62_CR11","doi-asserted-by":"crossref","unstructured":"Wang, M., Zou, Q., Liu, C: Multi-dimension association rule mining based on adaptive genetic algorithm. In: International Conference on Uncertainty Reasoning and Knowledge Engineering (URKE). IEEE (2011)","DOI":"10.1109\/URKE.2011.6007931"},{"issue":"3","key":"62_CR12","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1023\/A:1009755120593","volume":"2","author":"J Wijsen","year":"1998","unstructured":"Wijsen, J., Meersman, R.: On the complexity of mining quantitative association rules. Data Min. Knowl. Discovery 2(3), 263\u2013281 (1998)","journal-title":"Data Min. Knowl. Discovery"},{"issue":"2","key":"62_CR13","doi-asserted-by":"publisher","first-page":"3066","DOI":"10.1016\/j.eswa.2008.01.028","volume":"36","author":"X Yan","year":"2009","unstructured":"Yan, X., Zhang, C., Zhang, S.: Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Syst. Appl. 36(2), 3066\u20133076 (2009)","journal-title":"Expert Syst. Appl."}],"container-title":["Lecture Notes in Computer Science","Advances in Computational Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-20518-8_62","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,4]],"date-time":"2019-06-04T19:15:52Z","timestamp":1559675752000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-20518-8_62"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030205171","9783030205188"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-20518-8_62","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"16 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwann.uma.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"210","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"150","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"71% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}