{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:01:00Z","timestamp":1726030860427},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030205171"},{"type":"electronic","value":"9783030205188"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-20518-8_5","type":"book-chapter","created":{"date-parts":[[2019,6,4]],"date-time":"2019-06-04T23:02:40Z","timestamp":1559689360000},"page":"49-60","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Numerosity Representation in InfoGAN: An Empirical Study"],"prefix":"10.1007","author":[{"given":"Andrea","family":"Zanetti","sequence":"first","affiliation":[]},{"given":"Alberto","family":"Testolin","sequence":"additional","affiliation":[]},{"given":"Marco","family":"Zorzi","sequence":"additional","affiliation":[]},{"given":"Pawel","family":"Wawrzynski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,16]]},"reference":[{"issue":"2","key":"5_CR1","doi-asserted-by":"publisher","first-page":"194","DOI":"10.1038\/nn.2996","volume":"15","author":"I Stoianov","year":"2012","unstructured":"Stoianov, I., Zorzi, M.: Emergence of a \u2018visual number sense\u2019 in hierarchical generative models. Nat. NeuroscI. 15(2), 194\u2013196 (2012)","journal-title":"Nat. NeuroscI."},{"issue":"7","key":"5_CR2","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1016\/j.tics.2004.05.002","volume":"8","author":"L Feigenson","year":"2004","unstructured":"Feigenson, L., Dehaene, S., Spelke, E.: Core systems of number. Trends Cogn. Sci. 8(7), 307\u2013314 (2004)","journal-title":"Trends Cogn. Sci."},{"issue":"1740","key":"5_CR3","doi-asserted-by":"publisher","first-page":"20170043","DOI":"10.1098\/rstb.2017.0043","volume":"373","author":"Marco Zorzi","year":"2017","unstructured":"Zorzi, M., Testolin, A.: An emergentist perspective on the origin of number sense. Philos. Trans. Royal Soc. B Biol. Sci. 373(1740) (2018)","journal-title":"Philosophical Transactions of the Royal Society B: Biological Sciences"},{"key":"5_CR4","unstructured":"Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets (2016), \n arXiv:1606.03657"},{"key":"5_CR5","unstructured":"Wu, X., Zhang, X., Shu,X.: Cognitive Deficit of Deep Learning in Numerosity (2018), \n arXiv:1802.05160"},{"key":"5_CR6","unstructured":"Chen, S.Y., Zhou, Z., Fang, M., McClelland, J.L.: Can Generic Neural Networks Estimate Numerosity Like Humans? (2014)"},{"key":"5_CR7","unstructured":"Locatello, F., Bauer, S., Lucic, M., Gelly, S., Sch\u00f6lkopf, B., Bachem, O.: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations (2018), \n arXiv:1811.12359"},{"key":"5_CR8","unstructured":"Zhao, S., Ren, H., Yuan, A., Song, J., Goodman, N., Ermon, S.: Bias and Generalization in Deep Generative Models: An Empirical Study \n arXiv:1811.03259v1\n \n (2018)"},{"key":"5_CR9","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)"},{"key":"5_CR10","unstructured":"Goodfellow, I., et al.: Generative Adversarial Networks (2014), \n arXiv:1406.2661"},{"key":"5_CR11","unstructured":"Springenberg,J.: Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks (2015), \n arXiv:1511.06390"},{"key":"5_CR12","unstructured":"Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved Techniques for Training GANs (2016), \n arXiv:1606.03498"},{"key":"5_CR13","unstructured":"Barratt, S., Sharma, R.: A Note on the Inception Score (2018), \n arXiv:1801.01973"},{"key":"5_CR14","unstructured":"Katrina E., Drozdov, A.: Understanding Mutual Information and its Use in InfoGAN (2016)"},{"key":"5_CR15","unstructured":"Hill, F., Santoro, A., Barrett, D., Morcos, A., Lillicrap,T.: Learning to make analogies by contrasting abstract relational structure (2019), \n arXiv:1902.00120v1"},{"key":"5_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)","DOI":"10.1109\/ICCV.2015.425"},{"key":"5_CR17","unstructured":"https:\/\/github.com\/lukedeo\/keras-acgan\/blob\/master\/acgan-analysis.ipynb"}],"container-title":["Lecture Notes in Computer Science","Advances in Computational Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-20518-8_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,4]],"date-time":"2019-06-04T23:10:51Z","timestamp":1559689851000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-20518-8_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030205171","9783030205188"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-20518-8_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"16 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwann.uma.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"210","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"150","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"71% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}