{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:01:17Z","timestamp":1726030877509},"publisher-location":"Cham","reference-count":21,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030205171"},{"type":"electronic","value":"9783030205188"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-20518-8_26","type":"book-chapter","created":{"date-parts":[[2019,6,4]],"date-time":"2019-06-04T19:02:40Z","timestamp":1559674960000},"page":"302-312","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Trainable Thresholds for Neural Network Quantization"],"prefix":"10.1007","author":[{"given":"Alexander","family":"Goncharenko","sequence":"first","affiliation":[]},{"given":"Andrey","family":"Denisov","sequence":"additional","affiliation":[]},{"given":"Sergey","family":"Alyamkin","sequence":"additional","affiliation":[]},{"given":"Evgeny","family":"Terentev","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,5,16]]},"reference":[{"key":"26_CR1","unstructured":"Howard, A.G., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)"},{"key":"26_CR2","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"26_CR3","doi-asserted-by":"crossref","unstructured":"Tan, M., Chen, B., Pang, R., Vasudevan, V., Le, Q.V.: MnasNet: platform-aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626 (2018)","DOI":"10.1109\/CVPR.2019.00293"},{"key":"26_CR4","unstructured":"Lee, J.H., Ha, S., Choi, S., Lee, W., Lee, S.: Quantization for rapid deployment of deep neural networks. arXiv preprint arXiv:1810.05488 (2018)"},{"key":"26_CR5","doi-asserted-by":"crossref","unstructured":"Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic only inference. In: Conference on Computer Vision and Pattern Recognition CVPR (2018)","DOI":"10.1109\/CVPR.2018.00286"},{"key":"26_CR6","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"key":"26_CR7","unstructured":"Mishra, A., Marr, D.: Apprentice: Using knowledge distillation techniques to improve low-precision network accuracy. arXiv preprint arXiv:1711.05852 (2017)"},{"key":"26_CR8","unstructured":"Mishra, A., Nurvitadhi, E., Cook, J.J., Marr, D.: WRPN: wide reduced-precision networks. arXiv preprint arXiv:1709.01134 (2017)"},{"key":"26_CR9","unstructured":"Abadi, M., et al.: Tensorflow: Largescale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)"},{"key":"26_CR10","unstructured":"Courbariaux, M., Bengio, Y., David, J.: Training deep neural networks with low precision multiplications. In: International Conference on Learning Representations ICLR (2015)"},{"key":"26_CR11","unstructured":"Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 4107\u20134115 (2016)"},{"key":"26_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1007\/978-3-319-46493-0_32","volume-title":"Computer Vision \u2013 ECCV 2016","author":"M Rastegari","year":"2016","unstructured":"Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525\u2013542. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46493-0_32"},{"key":"26_CR13","unstructured":"Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)"},{"key":"26_CR14","unstructured":"Bengio, Y., Leonard, N., Courville, A.C.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)"},{"key":"26_CR15","unstructured":"McDonnell, M.D.: Training wide residual networks for deployment using a single bit for each weight. In: International Conference on Learning Representations ICLR (2018)"},{"key":"26_CR16","doi-asserted-by":"crossref","unstructured":"Zhu, S., Dong, X., Su, H.: Binary ensemble neural network: More bits per network or more networks per bit? arXiv preprint arXiv:1806.07550 (2018)","DOI":"10.1109\/CVPR.2019.00506"},{"key":"26_CR17","unstructured":"Baskin, C., et al.: Nice: Noise injection and clamping estimation for neural network quantization. arXiv preprint arXiv:1810.00162 (2018)"},{"key":"26_CR18","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575 (2014)"},{"key":"26_CR19","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning ICML (2015)"},{"key":"26_CR20","unstructured":"Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations ICLR (2015)"},{"key":"26_CR21","doi-asserted-by":"crossref","unstructured":"Sheng, T., Feng, C., Zhuo, S., Zhang, X., Shen, L., Aleksic, M.: A quantization-friendly separable convolution for mobilenets. arXiv preprint arXiv:1803.08607 (2018)","DOI":"10.1109\/EMC2.2018.00011"}],"container-title":["Lecture Notes in Computer Science","Advances in Computational Intelligence"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-20518-8_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,12,16]],"date-time":"2020-12-16T22:08:59Z","timestamp":1608156539000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-20518-8_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030205171","9783030205188"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-20518-8_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"16 May 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Gran Canaria","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwann2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwann.uma.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"210","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"150","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"71% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,9","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2,5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}