{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T02:51:36Z","timestamp":1726023096727},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030192730"},{"type":"electronic","value":"9783030192747"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-19274-7_28","type":"book-chapter","created":{"date-parts":[[2019,4,25]],"date-time":"2019-04-25T18:09:50Z","timestamp":1556215790000},"page":"391-406","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Merging Intelligent API Responses Using a Proportional Representation Approach"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7675-3100","authenticated-orcid":false,"given":"Tomohiro","family":"Ohtake","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7878-6283","authenticated-orcid":false,"given":"Alex","family":"Cummaudo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3812-9785","authenticated-orcid":false,"given":"Mohamed","family":"Abdelrazek","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4805-1467","authenticated-orcid":false,"given":"Rajesh","family":"Vasa","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4928-7076","authenticated-orcid":false,"given":"John","family":"Grundy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,4,26]]},"reference":[{"unstructured":"AWS: Amazon rekognition. https:\/\/aws.amazon.com\/rekognition\/","key":"28_CR1"},{"unstructured":"Clarifai, Inc.: Clarifai. https:\/\/www.clarifai.com","key":"28_CR2"},{"unstructured":"Deep AI, Inc.: Image Recognition API. https:\/\/deepai.org\/ai-image-processing","key":"28_CR3"},{"doi-asserted-by":"crossref","unstructured":"Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625\u20131634 (2018)","key":"28_CR4","DOI":"10.1109\/CVPR.2018.00175"},{"unstructured":"FileShadow: Fileshadow delivers machine learning to end users with google vision API. https:\/\/www.businesswire.com\/news\/home\/20180723005503\/en\/FileShadow-Delivers-Machine-Learning-Users-Google-Vision","key":"28_CR5"},{"unstructured":"Google: Google cloud vision API. https:\/\/cloud.google.com\/vision\/","key":"28_CR6"},{"unstructured":"Google: Open images dataset v4. https:\/\/storage.googleapis.com\/openimages\/web\/index.html","key":"28_CR7"},{"key":"28_CR8","volume-title":"Cloud Computing for Machine Learning and Cognitive Applications: A Machine Learning Approach","author":"K Hwang","year":"2017","unstructured":"Hwang, K.: Cloud Computing for Machine Learning and Cognitive Applications: A Machine Learning Approach. MIT Press, Cambridge (2017)"},{"unstructured":"IBM: Tone analyzer. https:\/\/www.ibm.com\/watson\/services\/tone-analyzer\/","key":"28_CR9"},{"unstructured":"IBM: Watson Visual Recognition. https:\/\/www.ibm.com\/watson\/services\/visual-recognition\/","key":"28_CR10"},{"unstructured":"Imagga: Imagga\u2019s API. https:\/\/imagga.com","key":"28_CR11"},{"unstructured":"Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world, July 2016. arXiv.org","key":"28_CR12"},{"issue":"2","key":"28_CR13","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1147\/rd.62.0200","volume":"6","author":"RE Lyons","year":"1962","unstructured":"Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer reliability. IBM J. Res. Dev. 6(2), 200\u2013209 (1962). https:\/\/doi.org\/10.1147\/rd.62.0200","journal-title":"IBM J. Res. Dev."},{"unstructured":"Geospatial Media and Communications: Mapillary and Amazon Rekognition collaborate to build a parking solution for US cities through computer vision. https:\/\/www.geospatialworld.net\/news\/mapillary-and-amazon-rekognition-collaborate\/","key":"28_CR14"},{"unstructured":"Microsoft: Microsoft azure computer vision API. https:\/\/azure.microsoft.com\/en-us\/services\/cognitive-services\/computer-vision\/","key":"28_CR15"},{"issue":"11","key":"28_CR16","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1145\/219717.219748","volume":"38","author":"GA Miller","year":"1995","unstructured":"Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39\u201341 (1995). https:\/\/doi.org\/10.1145\/219717.219748","journal-title":"Commun. ACM"},{"issue":"2","key":"28_CR17","doi-asserted-by":"publisher","first-page":"240","DOI":"10.1016\/j.mathsocsci.2008.03.003","volume":"56","author":"HF Niemeyer","year":"2008","unstructured":"Niemeyer, H.F., Niemeyer, A.C.: Apportionment methods. Math. Soc. Sci. 56(2), 240\u2013253 (2008). https:\/\/doi.org\/10.1016\/j.mathsocsci.2008.03.003","journal-title":"Math. Soc. Sci."},{"doi-asserted-by":"crossref","unstructured":"Pearl, J.: The seven tools of causal inference with reflections on machine learning (2018)","key":"28_CR18","DOI":"10.1145\/3241036"},{"doi-asserted-by":"crossref","unstructured":"Pezzementi, Z., et al.: Putting image manipulations in context: robustness testing for safe perception. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR, pp. 1\u20138, April 2018","key":"28_CR19","DOI":"10.1109\/SSRR.2018.8468619"},{"doi-asserted-by":"crossref","unstructured":"Ribeiro, M., Grolinger, K., Capretz, M.A.M.: MLaaS: machine learning as a service. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 896\u2013902. IEEE, December 2015","key":"28_CR20","DOI":"10.1109\/ICMLA.2015.152"},{"issue":"4","key":"28_CR21","doi-asserted-by":"publisher","first-page":"457","DOI":"10.1145\/944012.944017","volume":"21","author":"L Si","year":"2003","unstructured":"Si, L., Callan, J.: A semisupervised learning method to merge search engine results. ACM Trans. Inf. Syst. 21(4), 457\u2013491 (2003). https:\/\/doi.org\/10.1145\/944012.944017","journal-title":"ACM Trans. Inf. Syst."},{"unstructured":"Szegedy, C., et al.: Intriguing properties of neural networks (2013). arXiv:1312.6199","key":"28_CR22"},{"unstructured":"Talkwalker: Image Recognition for Visual Social Listening. https:\/\/www.talkwalker.com\/image-recognition","key":"28_CR23"},{"unstructured":"TheySay: Sentiment analysis API. http:\/\/www.theysay.io\/sentiment-analysis-api\/","key":"28_CR24"}],"container-title":["Lecture Notes in Computer Science","Web Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-19274-7_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,25]],"date-time":"2024-04-25T00:05:33Z","timestamp":1714003533000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-19274-7_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030192730","9783030192747"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-19274-7_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 April 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICWE","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Web Engineering","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Daejeon","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Korea (Republic of)","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 June 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 June 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icwe2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/icwe2019.webengineering.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"106","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"9","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}