{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T04:14:13Z","timestamp":1726028053913},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030185756"},{"type":"electronic","value":"9783030185763"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-18576-3_17","type":"book-chapter","created":{"date-parts":[[2019,4,23]],"date-time":"2019-04-23T04:05:29Z","timestamp":1555992329000},"page":"276-291","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Towards Robust Arbitrarily Oriented Subspace Clustering"],"prefix":"10.1007","author":[{"given":"Zhong","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Chongming","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Chongzhi","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Qinli","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Junming","family":"Shao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,4,24]]},"reference":[{"key":"17_CR1","doi-asserted-by":"crossref","unstructured":"Achtert, E., Goldhofer, S., Kriegel, H.P., Schubert, E., Zimek, A.: Evaluation of clusterings\u2013metrics and visual support. In: Proceedings of the 28th IEEE International Conference on Data Engineering, pp. 1285\u20131288 (2012)","DOI":"10.1109\/ICDE.2012.128"},{"key":"17_CR2","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for projected clustering. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, vol. 28 (1999)","DOI":"10.1145\/304182.304188"},{"key":"17_CR3","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional spaces. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, vol. 29 (2000)","DOI":"10.1145\/342009.335383"},{"key":"17_CR4","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, vol. 27 (1998)","DOI":"10.1145\/276304.276314"},{"key":"17_CR5","doi-asserted-by":"crossref","unstructured":"Assent, I., Krieger, R., Emmanuel, M., Seidl, T.: DUSC: dimensionality unbiased subspace clustering. In: Proceedings of the 7th IEEE International Conference on Data Mining, pp. 409\u2013414 (2008)","DOI":"10.1109\/ICDM.2007.49"},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"B\u00f6hm, C., Kailing, K., Kr\u00f6ger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 455\u2013466 (2004)","DOI":"10.1145\/1007568.1007620"},{"key":"17_CR7","doi-asserted-by":"crossref","unstructured":"Cheng, C.H., Fu, A.W., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 84\u201393 (1999)","DOI":"10.1145\/312129.312199"},{"key":"17_CR8","doi-asserted-by":"crossref","unstructured":"Goebl, S., He, X., Plant, C., B\u00f6hm, C.: Finding the optimal subspace for clustering. In: Proceedings of the 14th IEEE International Conference on Data Mining, pp. 130\u2013139 (2014)","DOI":"10.1109\/ICDM.2014.34"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"G\u00fcnnemann, S., F\u00e4rber, I., Virochsiri, K., Seidl, T.: Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 352\u2013360 (2012)","DOI":"10.1145\/2339530.2339588"},{"key":"17_CR10","doi-asserted-by":"crossref","unstructured":"Kailing, K., Kriegel, H.P., Kr\u00f6ger, P.: Density-connected subspace clustering for high-dimensional data. In: Proceedings of the 2004 SIAM International Conference on Data Mining, pp. 246\u2013256 (2004)","DOI":"10.1137\/1.9781611972740.23"},{"issue":"1","key":"17_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1497577.1497578","volume":"3","author":"HP Kriegel","year":"2009","unstructured":"Kriegel, H.P., Kr\u00f6ger, P., Zimek, A.: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3(1), 1 (2009)","journal-title":"ACM Trans. Knowl. Discov. Data"},{"issue":"1","key":"17_CR12","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","volume":"35","author":"G Liu","year":"2013","unstructured":"Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171\u2013184 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"17_CR13","unstructured":"Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning, pp. 663\u2013670 (2010)"},{"key":"17_CR14","doi-asserted-by":"crossref","unstructured":"Mautz, D., Ye, W., Plant, C., B\u00f6hm, C.: Towards an optimal subspace for k-means. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 365\u2013373 (2017)","DOI":"10.1145\/3097983.3097989"},{"key":"17_CR15","doi-asserted-by":"crossref","unstructured":"Mautz, D., Ye, W., Plant, C., B\u00f6hm, C.: Discovering non-redundant k-means clusterings in optimal subspaces. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1973\u20131982 (2018)","DOI":"10.1145\/3219819.3219945"},{"key":"17_CR16","unstructured":"Nie, F., Yuan, J., Huang, H.: Optimal mean robust principal component analysis. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32, pp. 1062\u20131070 (2014)"},{"key":"17_CR17","unstructured":"Nie, F., Huang, H.: Subspace clustering via new low-rank model with discrete group structure constraint. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 1874\u20131880 (2016)"},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Shao, J., Gao, C., Zeng, W., Song, J., Yang, Q.: Synchronization-inspired co-clustering and its application to gene expression data. In: 2017 IEEE International Conference on Data Mining, pp. 1075\u20131080 (2017)","DOI":"10.1109\/ICDM.2017.141"},{"issue":"1","key":"17_CR19","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1007\/s10115-016-1013-1","volume":"52","author":"J Shao","year":"2017","unstructured":"Shao, J., Wang, X., Yang, Q., Plant, C., B\u00f6hm, C.: Synchronization-based scalable subspace clustering of high-dimensional data. Knowl. Inf. Syst. 52(1), 83\u2013111 (2017)","journal-title":"Knowl. Inf. Syst."},{"issue":"1","key":"17_CR20","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1145\/2934688","volume":"11","author":"J Shao","year":"2016","unstructured":"Shao, J., Yang, Q., Dang, H.V., Schmidt, B., Kramer, S.: Scalable clustering by iterative partitioning and point attractor representation. ACM Trans. Knowl. Discov. Data 11(1), 5 (2016)","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"17_CR21","doi-asserted-by":"crossref","unstructured":"Tung, A.K.H., Xu, X., Ooi, B.C.: CURLER: finding and visualizing nonlinear correlation clusters. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 467\u2013478 (2005)","DOI":"10.1145\/1066157.1066211"},{"key":"17_CR22","doi-asserted-by":"crossref","unstructured":"Ye, W., Maurus, S., Hubig, N., Plant, C.: Generalized independent subspace clustering. In: Proceedings of the 2016 IEEE International Conference on Data Mining, pp. 569\u2013578 (2016)","DOI":"10.1109\/ICDM.2016.0068"}],"container-title":["Lecture Notes in Computer Science","Database Systems for Advanced Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-18576-3_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T09:08:07Z","timestamp":1710320887000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-18576-3_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030185756","9783030185763"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-18576-3_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"24 April 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DASFAA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Database Systems for Advanced Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chiang Mai","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thailand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 April 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 April 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dasfaa2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/dasfaa2019.eng.cmu.ac.th\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"501","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"92","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"64","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"13 demo papers, 6 tutorial papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}