{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T04:00:51Z","timestamp":1726027251907},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030148140"},{"type":"electronic","value":"9783030148157"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-14815-7_24","type":"book-chapter","created":{"date-parts":[[2019,3,18]],"date-time":"2019-03-18T00:02:40Z","timestamp":1552867360000},"page":"284-294","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Generative Cooperative Net for Image Generation and Data Augmentation"],"prefix":"10.1007","author":[{"given":"Qiangeng","family":"Xu","sequence":"first","affiliation":[]},{"given":"Zengchang","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Tao","family":"Wan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,3,7]]},"reference":[{"key":"24_CR1","unstructured":"Alex, K., Sutskever, I., Geoffrey, H.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the NIPS, pp. 1097\u20131105 (2012)"},{"key":"24_CR2","doi-asserted-by":"crossref","unstructured":"Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. In: Proceedings of the CVPR, pp. 1538\u20131546 (2015)","DOI":"10.1109\/CVPR.2015.7298761"},{"key":"24_CR3","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the NIPS, pp. 2672\u20132680 (2014)"},{"key":"24_CR4","unstructured":"Goodfellow, I.J.: NIPS 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)"},{"key":"24_CR5","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016","DOI":"10.1109\/CVPR.2016.90"},{"key":"24_CR6","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. ArXiv e-prints, November 2016","DOI":"10.1109\/CVPR.2017.632"},{"key":"24_CR7","doi-asserted-by":"crossref","unstructured":"Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675\u2013678. ACM (2014)","DOI":"10.1145\/2647868.2654889"},{"key":"24_CR8","unstructured":"Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"24_CR9","unstructured":"LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits (1998)"},{"key":"24_CR10","doi-asserted-by":"crossref","unstructured":"Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)","DOI":"10.1109\/CVPR.2017.19"},{"key":"24_CR11","doi-asserted-by":"crossref","unstructured":"Lundqvist, D., Flykt, A., \u00d6hman, A.: The Karolinska Directed Emotional Faces (KDEF). CD ROM from Department of Clinical Neuroscience, Psychology section, Karolinska Institutet, pp. 91\u2013630 (1998)","DOI":"10.1037\/t27732-000"},{"key":"24_CR12","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.neucom.2016.12.025","volume":"230","author":"JJ Lv","year":"2017","unstructured":"Lv, J.J., Shao, X.H., Huang, J.S., Zhou, X.D., Zhou, X.: Data augmentation for face recognition. Neurocomputing 230, 184\u2013196 (2017)","journal-title":"Neurocomputing"},{"key":"24_CR13","unstructured":"Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)"},{"key":"24_CR14","doi-asserted-by":"crossref","unstructured":"Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: The IEEE International Conference on Computer Vision (ICCV), December 2015","DOI":"10.1109\/ICCV.2015.178"},{"key":"24_CR15","doi-asserted-by":"crossref","unstructured":"Pathak, D., Kr\u00e4henb\u00fchl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting (2016)","DOI":"10.1109\/CVPR.2016.278"},{"key":"24_CR16","unstructured":"Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448\u2013455 (2009)"},{"key":"24_CR17","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs\/1409.1556 (2014)"},{"key":"24_CR18","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"24_CR19","doi-asserted-by":"crossref","unstructured":"Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: Proceedings of the CVPR, pp. 2528\u20132535 (2010)","DOI":"10.1109\/CVPR.2010.5539957"},{"key":"24_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"597","DOI":"10.1007\/978-3-319-46454-1_36","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J-Y Zhu","year":"2016","unstructured":"Zhu, J.-Y., Kr\u00e4henb\u00fchl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597\u2013613. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46454-1_36"}],"container-title":["Lecture Notes in Computer Science","Integrated Uncertainty in Knowledge Modelling and Decision Making"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-14815-7_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T12:14:08Z","timestamp":1709813648000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-14815-7_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030148140","9783030148157"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-14815-7_24","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"7 March 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IUKM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nara","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 March 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 March 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iukm2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www-inulab.sys.es.osaka-u.ac.jp\/iukm2019\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"93","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.1","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}