{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T22:16:44Z","timestamp":1726006604996},"publisher-location":"Cham","reference-count":37,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030116378"},{"type":"electronic","value":"9783030116385"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-11638-5_4","type":"book-chapter","created":{"date-parts":[[2019,1,17]],"date-time":"2019-01-17T06:43:32Z","timestamp":1547707412000},"page":"65-88","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Mining Local Process Models and Their Correlations"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8746-8826","authenticated-orcid":false,"given":"Laura","family":"Genga","sequence":"first","affiliation":[]},{"given":"Niek","family":"Tax","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9081-5996","authenticated-orcid":false,"given":"Nicola","family":"Zannone","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,18]]},"reference":[{"key":"4_CR1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-49851-4","volume-title":"Process Mining: Data Science in Action","author":"WMP van der Aalst","year":"2016","unstructured":"van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https:\/\/doi.org\/10.1007\/978-3-662-49851-4"},{"issue":"2","key":"4_CR2","first-page":"182","volume":"2","author":"WMP van der Aalst","year":"2012","unstructured":"van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 2(2), 182\u2013192 (2012)","journal-title":"Wiley Interdiscip. Rev.: Data Min. Knowl. Discov."},{"key":"4_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1007\/978-3-642-03848-8_12","volume-title":"Business Process Management","author":"RP Jagadeesh Chandra Bose","year":"2009","unstructured":"Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159\u2013175. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-03848-8_12"},{"key":"4_CR4","doi-asserted-by":"publisher","unstructured":"Buijs, J.C.A.M.: Receipt phase of an environmental permit application process (\u2018WABO\u2019). CoSeLoG project (2014). https:\/\/doi.org\/10.4121\/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6","DOI":"10.4121\/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6"},{"key":"4_CR5","doi-asserted-by":"crossref","unstructured":"Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discovering process trees. In: CEC, pp. 1\u20138. IEEE (2012)","DOI":"10.1109\/CEC.2012.6256458"},{"key":"4_CR6","doi-asserted-by":"crossref","unstructured":"Burges, C., et al.: Learning to rank using gradient descent. In: ICML, pp. 89\u201396 (2005)","DOI":"10.1145\/1102351.1102363"},{"key":"4_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"358","DOI":"10.1007\/978-3-540-85758-7_26","volume-title":"Business Process Management","author":"J Carmona","year":"2008","unstructured":"Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358\u2013373. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-85758-7_26"},{"key":"4_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"324","DOI":"10.1007\/978-3-319-65000-5_19","volume-title":"Business Process Management","author":"D Chapela-Campa","year":"2017","unstructured":"Chapela-Campa, D., Mucientes, M., Lama, M.: Discovering infrequent behavioral patterns in process models. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 324\u2013340. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-65000-5_19"},{"issue":"1","key":"4_CR9","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1007\/s10844-016-0394-7","volume":"47","author":"C Diamantini","year":"2016","unstructured":"Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for unstructured processes. J. Intell. Inf. Syst. 47(1), 5\u201332 (2016)","journal-title":"J. Intell. Inf. Syst."},{"key":"4_CR10","doi-asserted-by":"publisher","unstructured":"van Dongen, B.F.: BPI challenge (2012). https:\/\/doi.org\/10.4121\/uuid:3926db30-f712-4394-aebc-75976070e91f","DOI":"10.4121\/uuid:3926db30-f712-4394-aebc-75976070e91f"},{"issue":"1","key":"4_CR11","first-page":"3389","volume":"15","author":"P Fournier-Viger","year":"2014","unstructured":"Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15(1), 3389\u20133393 (2014)","journal-title":"J. Mach. Learn. Res."},{"issue":"4","key":"4_CR12","first-page":"e1207","volume":"7","author":"Philippe Fournier-Viger","year":"2017","unstructured":"Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 7(4) (2017)","journal-title":"Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery"},{"key":"4_CR13","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1007\/978-3-319-61461-8_12","volume-title":"New Frontiers in Mining Complex Patterns","author":"L Genga","year":"2017","unstructured":"Genga, L., Potena, D., Martino, O., Alizadeh, M., Diamantini, C., Zannone, N.: Subgraph mining for anomalous pattern discovery in event logs. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Ra\u015b, Z.W. (eds.) NFMCP 2016. LNCS (LNAI), vol. 10312, pp. 181\u2013197. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-61461-8_12"},{"issue":"4","key":"4_CR14","doi-asserted-by":"publisher","first-page":"519","DOI":"10.1109\/TKDE.2005.63","volume":"17","author":"G Greco","year":"2005","unstructured":"Greco, G., Guzzo, A., Manco, G., Sacc\u00e0, D.: Mining and reasoning on workflows. IEEE Trans. Knowl. Data Eng. 17(4), 519\u2013534 (2005)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"1","key":"4_CR15","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1016\/j.is.2007.07.003","volume":"33","author":"KY Huang","year":"2008","unstructured":"Huang, K.Y., Chang, C.H.: Efficient mining of frequent episodes from complex sequences. Inf. Syst. 33(1), 96\u2013114 (2008)","journal-title":"Inf. Syst."},{"issue":"1","key":"4_CR16","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.artmed.2012.06.002","volume":"56","author":"Z Huang","year":"2012","unstructured":"Huang, Z., Lu, X., Duan, H.: On mining clinical pathway patterns from medical behaviors. Artif. Intell. Med. 56(1), 35\u201350 (2012)","journal-title":"Artif. Intell. Med."},{"issue":"4","key":"4_CR17","doi-asserted-by":"publisher","first-page":"422","DOI":"10.1145\/582415.582418","volume":"20","author":"K J\u00e4rvelin","year":"2002","unstructured":"J\u00e4rvelin, K., Kek\u00e4l\u00e4inen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422\u2013446 (2002)","journal-title":"ACM Trans. Inf. Syst."},{"key":"4_CR18","first-page":"19","volume":"2","author":"I Jonyer","year":"2002","unstructured":"Jonyer, I., Cook, D., Holder, L.: Graph-based hierarchical conceptual clustering. J. Mach. Learn. Res. 2, 19\u201343 (2002)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR19","series-title":"Lecture Notes in Business Information Processing","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-319-27243-6_1","volume-title":"Data-Driven Process Discovery and Analysis","author":"M Leemans","year":"2015","unstructured":"Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs. In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp. 1\u201331. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-27243-6_1"},{"key":"4_CR20","series-title":"Lecture Notes in Business Information Processing","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1007\/978-3-319-06257-0_6","volume-title":"Business Process Management Workshops","author":"SJJ Leemans","year":"2014","unstructured":"Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66\u201378. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-06257-0_6"},{"key":"4_CR21","doi-asserted-by":"crossref","unstructured":"Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: SIGMOD Workshop on Research Issues in DM&KD, pp. 2\u201311. ACM (2003)","DOI":"10.1145\/882082.882086"},{"key":"4_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-69462-7_11","volume-title":"CoopIS","author":"X Lu","year":"2018","unstructured":"Lu, X., et al.: Semi-supervised log pattern detection and exploration using event concurrence and contextual information. In: Panetto, H., et al. (eds.) CoopIS. LNCS, vol. 10573. Springer, Heidelberg (2018). https:\/\/doi.org\/10.1007\/978-3-319-69462-7_11"},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192\u2013199. IEEE (2011)","DOI":"10.1109\/CIDM.2011.5949297"},{"key":"4_CR24","unstructured":"Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: RADAR+EMISA, pp. 72\u201380. CEUR (2017)"},{"issue":"3","key":"4_CR25","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1023\/A:1009748302351","volume":"1","author":"H Mannila","year":"1997","unstructured":"Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1(3), 259\u2013289 (1997)","journal-title":"Data Min. Knowl. Discov."},{"issue":"3","key":"4_CR26","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1007\/s10115-009-0224-0","volume":"21","author":"L M\u0103ru\u015fter","year":"2009","unstructured":"M\u0103ru\u015fter, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology based on simulation and process mining techniques. Knowl. Inf. Syst. 21(3), 267\u2013297 (2009)","journal-title":"Knowl. Inf. Syst."},{"key":"4_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1007\/978-3-642-32885-5_21","volume-title":"Business Process Management","author":"E Ramezani","year":"2012","unstructured":"Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? Diagnostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 262\u2013278. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-32885-5_21"},{"key":"4_CR28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-69968-9","volume-title":"Petri Nets: An Introduction","author":"W Reisig","year":"2012","unstructured":"Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-69968-9"},{"key":"4_CR29","series-title":"Lecture Notes in Business Information Processing","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1007\/978-3-319-19237-6_3","volume-title":"Enterprise, Business-Process and Information Systems Modeling","author":"S Sch\u00f6nig","year":"2015","unstructured":"Sch\u00f6nig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 37\u201352. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-19237-6_3"},{"key":"4_CR30","unstructured":"Tax, N., Dumas, M.: Mining non-redundant sets of generalizing patterns from sequence databases. arXiv preprint arXiv:1712.04159 (2017)"},{"key":"4_CR31","unstructured":"Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for efficient local process model mining. In: Proceedings of International Symposium on Data-driven Process Discovery and Analysis, pp. 8\u201322. CEUR-WS.org (2017)"},{"key":"4_CR32","doi-asserted-by":"crossref","unstructured":"Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches for generating local process models through log projections. In: CIDM, pp. 1\u20138. IEEE (2016)","DOI":"10.1109\/SSCI.2016.7849948"},{"issue":"2","key":"4_CR33","doi-asserted-by":"publisher","first-page":"183","DOI":"10.1016\/j.jides.2016.11.001","volume":"3","author":"N Tax","year":"2016","unstructured":"Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process models. J. Innov. Digit. Ecosyst. 3(2), 183\u2013196 (2016)","journal-title":"J. Innov. Digit. Ecosyst."},{"key":"4_CR34","unstructured":"Verbeek, H.M.W., Buijs, J.C.A., Van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: the process mining toolkit. In: BPM Demos, vol. 615, pp. 34\u201339. CEUR (2010)"},{"key":"4_CR35","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1007\/978-3-540-68746-7_24","volume-title":"Applications and Theory of Petri Nets","author":"JMEM van der Werf","year":"2008","unstructured":"van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368\u2013387. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-68746-7_24"},{"key":"4_CR36","doi-asserted-by":"crossref","unstructured":"van de Werff, T., Niemantsverdriet, K., van Essen, H., Eggen, B.: Evaluating interface characteristics for shared lighting systems in the office environment. In: DIS, pp. 209\u2013220. ACM (2017)","DOI":"10.1145\/3064663.3064749"},{"key":"4_CR37","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1007\/978-3-642-13657-3_34","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"W Zhou","year":"2010","unstructured":"Zhou, W., Liu, H., Cheng, H.: Mining closed episodes from event sequences efficiently. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6118, pp. 310\u2013318. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-13657-3_34"}],"container-title":["Lecture Notes in Business Information Processing","Data-Driven Process Discovery and Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-11638-5_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,16]],"date-time":"2023-01-16T20:03:20Z","timestamp":1673899400000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-11638-5_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030116378","9783030116385"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-11638-5_4","relation":{},"ISSN":["1865-1348","1865-1356"],"issn-type":[{"type":"print","value":"1865-1348"},{"type":"electronic","value":"1865-1356"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"18 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SIMPDA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Data-Driven Process Discovery and Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Neuchatel","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Switzerland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2017","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 December 2017","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 December 2017","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"simpda2017","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/simpda2017.di.unimi.it\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}