{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:34:38Z","timestamp":1726014878150},"publisher-location":"Cham","reference-count":9,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030115388"},{"type":"electronic","value":"9783030115395"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-11539-5_77","type":"book-chapter","created":{"date-parts":[[2019,3,8]],"date-time":"2019-03-08T15:26:23Z","timestamp":1552058783000},"page":"654-662","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Analogue of Cubic Spline for Functions with Large Gradients in a Boundary Layer"],"prefix":"10.1007","author":[{"given":"Alexander","family":"Zadorin","sequence":"first","affiliation":[]},{"given":"Igor\u2019","family":"Blatov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,26]]},"reference":[{"key":"77_CR1","doi-asserted-by":"publisher","first-page":"596","DOI":"10.1007\/BF01093706","volume":"6","author":"AM Il\u2019in","year":"1969","unstructured":"Il\u2019in, A.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivative. USSR Math. Notes 6, 596\u2013602 (1969)","journal-title":"USSR Math. Notes"},{"key":"77_CR2","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1016\/0041-5553(69)90038-X","volume":"9","author":"NS Bakhvalov","year":"1969","unstructured":"Bakhvalov, N.S.: The optimization of methods of solving boundary value problems with a boundary layer. USSR Comput. Math. Math. Phys. 9, 139\u2013166 (1969)","journal-title":"USSR Comput. Math. Math. Phys."},{"key":"77_CR3","volume-title":"Grid Approximations of Singular Perturbation Elliptic and Parabolic Equations","author":"GI Shishkin","year":"1992","unstructured":"Shishkin, G.I.: Grid Approximations of Singular Perturbation Elliptic and Parabolic Equations. UB RAS, Yekaterinburg (1992). (in Russian)"},{"issue":"4","key":"77_CR4","doi-asserted-by":"publisher","first-page":"578","DOI":"10.1134\/S0037446617040036","volume":"58","author":"IA Blatov","year":"2017","unstructured":"Blatov, I.A., Zadorin, A.I., Kitaeva, E.V.: Parabolic spline interpolation for functions with large gradient in the boundary layer. Siber. Math. J. 58(4), 578\u2013590 (2017)","journal-title":"Siber. Math. J."},{"issue":"2","key":"77_CR5","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1134\/S1995423917020021","volume":"10","author":"IA Blatov","year":"2017","unstructured":"Blatov, I.A., Zadorin, A.I., Kitaeva, E.V.: On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer. Numer. Anal. Appl. 10(2), 108\u2013119 (2017)","journal-title":"Numer. Anal. Appl."},{"issue":"1","key":"77_CR6","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1134\/S0965542517010043","volume":"57","author":"IA Blatov","year":"2017","unstructured":"Blatov, I.A., Zadorin, A.I., Kitaeva, E.V.: Cubic Spline Interpolation of Functions with High Gradients in Boundary Layers. Comput. Math. Math. Phys. 57(1), 9\u201328 (2017)","journal-title":"Comput. Math. Math. Phys."},{"issue":"2\u20133","key":"77_CR7","first-page":"262","volume":"2","author":"AI Zadorin","year":"2011","unstructured":"Zadorin, A.I.: Spline interpolation of functions with a boundary layer component. Int. J. Numer. Anal. Model Series B 2(2\u20133), 262\u2013279 (2011)","journal-title":"Int. J. Numer. Anal. Model Series B"},{"issue":"3","key":"77_CR8","doi-asserted-by":"publisher","first-page":"348","DOI":"10.1134\/S0965542518030028","volume":"58","author":"IA Blatov","year":"2018","unstructured":"Blatov, I.A., Zadorin, A.I., Kitaeva, E.V.: On the parameter-uniform convergence of exponential spline interpolation in the presence of a boundary layer. Comput. Math. Math. Phys. 58(3), 348\u2013363 (2018)","journal-title":"Comput. Math. Math. Phys."},{"key":"77_CR9","doi-asserted-by":"publisher","first-page":"1025","DOI":"10.1090\/S0025-5718-1978-0483484-9","volume":"32","author":"RB Kellogg","year":"1978","unstructured":"Kellogg, R.B., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32, 1025\u20131039 (1978)","journal-title":"Math. Comput."}],"container-title":["Lecture Notes in Computer Science","Finite Difference Methods. Theory and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-11539-5_77","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,20]],"date-time":"2019-05-20T10:23:26Z","timestamp":1558347806000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-11539-5_77"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030115388","9783030115395"],"references-count":9,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-11539-5_77","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"FDM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Finite Difference Methods","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lozenetz","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bulgaria","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 June 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 June 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"fdm2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/parallel.bas.bg\/dpa\/FDM2018\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}