{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:34:50Z","timestamp":1726014890988},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030115388"},{"type":"electronic","value":"9783030115395"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-11539-5_64","type":"book-chapter","created":{"date-parts":[[2019,3,8]],"date-time":"2019-03-08T10:26:23Z","timestamp":1552040783000},"page":"550-557","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Explicit and Conditionally Stable Combined Numerical Method for 1D and 2D Nonlinear Schr\u00f6dinger Equation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0314-6545","authenticated-orcid":false,"given":"Vyacheslav A.","family":"Trofimov","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0571-7142","authenticated-orcid":false,"given":"Evgeny M.","family":"Trykin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,26]]},"reference":[{"key":"64_CR1","series-title":"Lecture Notes in Electrical Engineering","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1007\/978-3-319-03967-1_14","volume-title":"Computational Problems in Engineering","author":"VA Trofimov","year":"2014","unstructured":"Trofimov, V.A., Trykin, E.M.: Combined method for solving of 1D nonlinear Schr\u00f6dinger equation. In: Mastorakis, N., Mladenov, V. (eds.) Computational Problems in Engineering. LNEE, vol. 307, pp. 173\u2013187. Springer, Cham (2014). \n https:\/\/doi.org\/10.1007\/978-3-319-03967-1_14"},{"issue":"4","key":"64_CR2","first-page":"1058","volume":"14","author":"YN Karamzin","year":"1974","unstructured":"Karamzin, Y.N.: Difference schemes for computations of three-frequency interactions of electromagnetic waves in a nonlinear medium with quadratic polarization. Zh. Vychisl. Mat. Mat. Fiz. 14(4), 1058\u20131062 (1974)","journal-title":"Zh. Vychisl. Mat. Mat. Fiz."},{"issue":"4","key":"64_CR3","doi-asserted-by":"publisher","first-page":"329","DOI":"10.1093\/comjnl\/5.4.329","volume":"5","author":"HH Rosenbrock","year":"1963","unstructured":"Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5(4), 329\u2013330 (1963). \n https:\/\/doi.org\/10.1093\/comjnl\/5.4.329","journal-title":"Comput. J."},{"key":"64_CR4","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1134\/S0965542506010155","volume":"46","author":"EB Tereshin","year":"2006","unstructured":"Tereshin, E.B., Trofimov, V.A., Fedotov, M.V.: Conservative finite difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with non-reflecting boundary conditions. Comput. Math. Math. Phys. 46, 154\u2013164 (2006). \n https:\/\/doi.org\/10.1134\/S0965542506010155","journal-title":"Comput. Math. Math. Phys."},{"key":"64_CR5","series-title":"Applied Mathematical Sciences","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-12748-4","volume-title":"The Nonlinear Schr\u00f6dinger Equation: Singular Solutions and Optical Collapse","author":"G Fibich","year":"2015","unstructured":"Fibich, G.: The Nonlinear Schr\u00f6dinger Equation: Singular Solutions and Optical Collapse. AMS, vol. 192. Springer, Cham (2015). \n https:\/\/doi.org\/10.1007\/978-3-319-12748-4"},{"issue":"3","key":"64_CR6","doi-asserted-by":"publisher","first-page":"501","DOI":"10.4310\/CMS.2003.v1.n3.a7","volume":"1","author":"A Arnold","year":"2003","unstructured":"Arnold, A., Ehrhardt, M., Sofronov, I.: Discrete transparent boundary conditions for the Schr\u00f6dinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1(3), 501\u2013556 (2003)","journal-title":"Commun. Math. Sci."},{"issue":"2","key":"64_CR7","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1002\/cpa.20200","volume":"61","author":"S Jiang","year":"2007","unstructured":"Jiang, S., Greengard, L., Sofronov, I.: Efficient representation of nonreflecting boundary conditions for the time-dependent Schr\u00f6dinger equation in two dimensions. Commun. Pure Appl. Math. 61(2), 261\u2013288 (2007)","journal-title":"Commun. Pure Appl. Math."},{"issue":"2","key":"64_CR8","doi-asserted-by":"publisher","first-page":"1577","DOI":"10.1016\/j.jcp.2007.02.004","volume":"225","author":"Z Xu","year":"2007","unstructured":"Xu, Z., Han, H., Wu, X.: Adaptive absorbing boundary conditions for Schr\u00f6dinger-type equations: application to nonlinear and multi-dimensional problems. J. Comp. Phys. 225(2), 1577\u20131589 (2007). \n https:\/\/doi.org\/10.1016\/j.jcp.2007.02.004","journal-title":"J. Comp. Phys."},{"issue":"3","key":"64_CR9","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1002\/num.20193","volume":"23","author":"H Han","year":"2006","unstructured":"Han, H., Yin, D., Huang, Z.: Numerical solutions of Schr\u00f6dinger equations in R3. Numer. Methods Part. Differ. Eq. Int. J. 23(3), 511\u2013533 (2006). \n https:\/\/doi.org\/10.1002\/num.20193","journal-title":"Numer. Methods Part. Differ. Eq. Int. J."},{"issue":"248","key":"64_CR10","doi-asserted-by":"publisher","first-page":"1779","DOI":"10.2307\/4100054","volume":"73","author":"X Antoine","year":"2004","unstructured":"Antoine, X., Besse, C., Mouysset, V.: Numerical schemes for the simulation of the two-dimensional Schr\u00f6dinger equation using non-reflecting boundary conditions. Math. Comput. 73(248), 1779\u20131799 (2004). \n https:\/\/doi.org\/10.2307\/4100054","journal-title":"Math. Comput."},{"issue":"2","key":"64_CR11","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1016\/j.jcp.2005.11.005","volume":"215","author":"C Zheng","year":"2006","unstructured":"Zheng, C.: Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schr\u00f6dinger equations. J. Comp. Phys. 215(2), 552\u2013565 (2006). \n https:\/\/doi.org\/10.1016\/j.jcp.2005.11.005","journal-title":"J. Comp. Phys."},{"issue":"2","key":"64_CR12","doi-asserted-by":"publisher","first-page":"1218","DOI":"10.1016\/j.jcp.2007.01.020","volume":"225","author":"A Soffer","year":"2007","unstructured":"Soffer, A., Stucchio, C.: Open boundaries for the nonlinear Schr\u00f6dinger equation. J. Comp. Phys. 225(2), 1218\u20131232 (2007). \n https:\/\/doi.org\/10.1016\/j.jcp.2007.01.020","journal-title":"J. Comp. Phys."},{"issue":"3","key":"64_CR13","doi-asserted-by":"publisher","first-page":"037704","DOI":"10.1103\/PhysRevE.74.037704","volume":"74","author":"Z Xu","year":"2006","unstructured":"Xu, Z., Han, H.: Absorbing boundary conditions for nonlinear Schr\u00f6dinger equations. Phys. Rev. E 74(3), 037704 (2006). \n https:\/\/doi.org\/10.1103\/PhysRevE.74.037704","journal-title":"Phys. Rev. E"},{"issue":"1","key":"64_CR14","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1137\/S1064827594277053","volume":"21","author":"T Fevens","year":"1999","unstructured":"Fevens, T., Jiang, H.: Absorbing boundary conditions for the Schr\u00f6dinger equation. SIAM J. Sci. Comput. 21(1), 255\u2013282 (1999). \n https:\/\/doi.org\/10.1137\/S1064827594277053","journal-title":"SIAM J. Sci. Comput."},{"key":"64_CR15","doi-asserted-by":"publisher","first-page":"063305","DOI":"10.1103\/PhysRevE.96.063305","volume":"96","author":"H Li","year":"2017","unstructured":"Li, H., Guo, Y.: Numerical solution of the general coupled nonlinear Schr\u00f6dinger equations on unbounded domains. Phys. Rev. E 96, 063305 (2017). \n https:\/\/doi.org\/10.1103\/PhysRevE.96.063305","journal-title":"Phys. Rev. E"},{"issue":"2","key":"64_CR16","doi-asserted-by":"publisher","first-page":"808","DOI":"10.1137\/13090715X","volume":"52","author":"X Yang","year":"2014","unstructured":"Yang, X., Zhang, J.: Computation of the Schr\u00f6dinger equation in the semiclassical regime on an unbounded domain. SIAM J. Numer. Anal. 52(2), 808\u2013831 (2014). \n https:\/\/doi.org\/10.1137\/13090715X","journal-title":"SIAM J. Numer. Anal."},{"key":"64_CR17","doi-asserted-by":"publisher","unstructured":"Trofimov, V.A., Trykin, E.M.: Construction of adaptive artificial boundary conditions using the invariant ratios for Schr\u00f6dinger equation. In: 2014 East-West Design Test Symposium (EWDTS), pp. 1\u20134 . IEEE Conference Publications (2014). \n https:\/\/doi.org\/10.1109\/EWDTS.2014.7027098","DOI":"10.1109\/EWDTS.2014.7027098"}],"container-title":["Lecture Notes in Computer Science","Finite Difference Methods. Theory and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-11539-5_64","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,20]],"date-time":"2019-05-20T06:22:55Z","timestamp":1558333375000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-11539-5_64"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030115388","9783030115395"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-11539-5_64","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"26 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"FDM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Finite Difference Methods","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lozenetz","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bulgaria","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 June 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 June 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"fdm2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/parallel.bas.bg\/dpa\/FDM2018\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}