{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T22:26:37Z","timestamp":1726007197334},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030110147"},{"type":"electronic","value":"9783030110154"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-11015-4_14","type":"book-chapter","created":{"date-parts":[[2019,1,24]],"date-time":"2019-01-24T01:42:47Z","timestamp":1548294167000},"page":"154-168","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Joint Future Semantic and Instance Segmentation Prediction"],"prefix":"10.1007","author":[{"given":"Camille","family":"Couprie","sequence":"first","affiliation":[]},{"given":"Pauline","family":"Luc","sequence":"additional","affiliation":[]},{"given":"Jakob","family":"Verbeek","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,23]]},"reference":[{"key":"14_CR1","doi-asserted-by":"publisher","first-page":"1460","DOI":"10.1016\/j.imavis.2009.06.017","volume":"28","author":"C All\u00e8ne","year":"2009","unstructured":"All\u00e8ne, C., Audibert, J.Y., Couprie, M., Keriven, R.: Some links between extremum spanning forests, watersheds and min-cuts. Image Vis. Comput. 28, 1460\u20131471 (2009)","journal-title":"Image Vis. Comput."},{"key":"14_CR2","doi-asserted-by":"crossref","unstructured":"Arnab, A., Torr, P.H.S.: Pixelwise instance segmentation with a dynamically instantiated network. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.100"},{"key":"14_CR3","unstructured":"Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. In: ICLR (2018)"},{"key":"14_CR4","doi-asserted-by":"crossref","unstructured":"Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.305"},{"key":"14_CR5","doi-asserted-by":"crossref","unstructured":"Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: ICCV (2007)","DOI":"10.21236\/ADA478319"},{"key":"14_CR6","doi-asserted-by":"crossref","unstructured":"Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00441"},{"key":"14_CR7","unstructured":"Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: ICCV (2001)"},{"key":"14_CR8","doi-asserted-by":"publisher","first-page":"1222","DOI":"10.1109\/34.969114","volume":"23","author":"Y Boykov","year":"2001","unstructured":"Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222\u20131239 (2001)","journal-title":"PAMI"},{"key":"14_CR9","doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.350"},{"issue":"7","key":"14_CR10","doi-asserted-by":"publisher","first-page":"1384","DOI":"10.1109\/TPAMI.2010.200","volume":"33","author":"C Couprie","year":"2011","unstructured":"Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: a unifying graph-based optimization framework. PAMI 33(7), 1384\u20131399 (2011)","journal-title":"PAMI"},{"key":"14_CR11","unstructured":"Denton, E., Birodkar, V.: Unsupervised learning of disentangled representations from video. In: NIPS (2017)"},{"key":"14_CR12","unstructured":"Denton, E., Fergus, R.: Stochastic video generation with a learned prior. In: ICML (2018). http:\/\/proceedings.mlr.press\/v80\/denton18a.html"},{"key":"14_CR13","unstructured":"Dosovitskiy, A., Koltun, V.: Learning to act by predicting the future. In: ICLR (2017)"},{"key":"14_CR14","unstructured":"Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: NIPS (2016)"},{"issue":"11","key":"14_CR15","doi-asserted-by":"publisher","first-page":"1768","DOI":"10.1109\/TPAMI.2006.233","volume":"28","author":"L Grady","year":"2006","unstructured":"Grady, L.: Random walks for image segmentation. PAMI 28(11), 1768\u20131783 (2006)","journal-title":"PAMI"},{"key":"14_CR16","doi-asserted-by":"crossref","unstructured":"Grady, L., Sinop, A.K.: Fast approximate random walker segmentation using eigenvector precomputation. In: CVPR (2008)","DOI":"10.1109\/CVPR.2008.4587487"},{"key":"14_CR17","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"14_CR18","unstructured":"Jin, X., et al.: Predicting scene parsing and motion dynamics in the future. In: NIPS (2017)"},{"key":"14_CR19","unstructured":"Luc, P., Couprie, C., Verbeek, J., LeCun, Y.: Predictive learning in feature space for future instance segmentation. In: ECCV (2018)"},{"key":"14_CR20","doi-asserted-by":"crossref","unstructured":"Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into the future of semantic segmentation. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.77"},{"key":"14_CR21","unstructured":"Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: ICLR (2016)"},{"key":"14_CR22","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1007\/0-306-47025-X_36","volume-title":"Mathematical Morphology and its Applications to Image and Signal Processing","author":"A Meijster","year":"2000","unstructured":"Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 331\u2013340. Springer, Boston (2000). https:\/\/doi.org\/10.1007\/0-306-47025-X_36"},{"key":"14_CR23","unstructured":"Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.P.: Action-conditional video prediction using deep networks in Atari games. arXiv:1507.08750 (2015)"},{"key":"14_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1007\/978-3-319-46448-0_5","volume-title":"Computer Vision \u2013 ECCV 2016","author":"PO Pinheiro","year":"2016","unstructured":"Pinheiro, P.O., Lin, T.-Y., Collobert, R., Doll\u00e1r, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75\u201391. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_5"},{"key":"14_CR25","unstructured":"Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv:1412.6604 (2014)"},{"key":"14_CR26","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)"},{"key":"14_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1007\/978-3-319-46466-4_19","volume-title":"Computer Vision \u2013 ECCV 2016","author":"B Romera-Paredes","year":"2016","unstructured":"Romera-Paredes, B., Torr, P.H.S.: Recurrent instance segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 312\u2013329. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_19"},{"key":"14_CR28","unstructured":"Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)"},{"issue":"6","key":"14_CR29","doi-asserted-by":"publisher","first-page":"583","DOI":"10.1109\/34.87344","volume":"13","author":"L Vincent","year":"1991","unstructured":"Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. PAMI 13(6), 583\u2013598 (1991)","journal-title":"PAMI"},{"key":"14_CR30","unstructured":"Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by watching unlabeled video. In: CVPR (2016)"},{"key":"14_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"835","DOI":"10.1007\/978-3-319-46478-7_51","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J Walker","year":"2016","unstructured":"Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static images using variational autoencoders. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 835\u2013851. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46478-7_51"},{"key":"14_CR32","doi-asserted-by":"crossref","unstructured":"Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: video forecasting by generating pose futures. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.361"},{"key":"14_CR33","doi-asserted-by":"crossref","unstructured":"Watanabe, T., Wolf, D.: Distance to center of mass encoding for instance segmentation. arXiv:1711.09060 (2017)","DOI":"10.1109\/ITSC.2018.8569704"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2018 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-11015-4_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,21]],"date-time":"2023-01-21T20:30:49Z","timestamp":1674333049000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-11015-4_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030110147","9783030110154"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-11015-4_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"23 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2018.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}