{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:42:26Z","timestamp":1732038146894},"publisher-location":"Cham","reference-count":31,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030110086"},{"type":"electronic","value":"9783030110093"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-11009-3_15","type":"book-chapter","created":{"date-parts":[[2019,1,24]],"date-time":"2019-01-24T06:24:44Z","timestamp":1548311084000},"page":"256-272","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":104,"title":["EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection"],"prefix":"10.1007","author":[{"given":"Mohsen","family":"Ghafoorian","sequence":"first","affiliation":[]},{"given":"Cedric","family":"Nugteren","sequence":"additional","affiliation":[]},{"given":"N\u00f3ra","family":"Baka","sequence":"additional","affiliation":[]},{"given":"Olaf","family":"Booij","sequence":"additional","affiliation":[]},{"given":"Michael","family":"Hofmann","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,23]]},"reference":[{"issue":"3","key":"15_CR1","doi-asserted-by":"publisher","first-page":"727","DOI":"10.1007\/s00138-011-0404-2","volume":"25","author":"A Bar Hillel","year":"2014","unstructured":"Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach. Vis. Appl. 25(3), 727\u2013745 (2014). https:\/\/doi.org\/10.1007\/s00138-011-0404-2","journal-title":"Mach. Vis. Appl."},{"key":"15_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"460","DOI":"10.1007\/978-3-319-46723-8_53","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","author":"A BenTaieb","year":"2016","unstructured":"BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460\u2013468. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46723-8_53"},{"key":"15_CR3","unstructured":"Dai, W., et al.: Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv preprint arXiv:1703.08770 (2017)"},{"key":"15_CR4","unstructured":"Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS: Advances in Neural Information Processing Systems, pp. 658\u2013666 (2016)"},{"key":"15_CR5","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672\u20132680. Curran Associates, Inc. (2014). http:\/\/papers.nips.cc\/paper\/5423-generative-adversarial-nets.pdf"},{"key":"15_CR6","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR: Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"15_CR7","unstructured":"Hung, W.C., Tsai, Y.H., Liou, Y.T., Lin, Y.Y., Yang, M.H.: Adversarial learning for semi-supervised semantic segmentation. arXiv e-prints, February 2018"},{"key":"15_CR8","doi-asserted-by":"publisher","unstructured":"Huo, Y., et al.: Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. In: Proceedings of SPIE, vol. 10574, pp. 10574\u201310574-7 (2018). https:\/\/doi.org\/10.1117\/12.2293406","DOI":"10.1117\/12.2293406"},{"key":"15_CR9","unstructured":"Hwang, J.J., Ke, T.W., Shi, J., Yu, S.X.: Adversarial structure matching loss for image segmentation. arXiv preprint arXiv:1805.07457 (2018)"},{"key":"15_CR10","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR: Computer Vision and Pattern Recognition (2017)","DOI":"10.1109\/CVPR.2017.632"},{"key":"15_CR11","doi-asserted-by":"publisher","unstructured":"Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. In: CVPRW: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1175\u20131183, July 2017. https:\/\/doi.org\/10.1109\/CVPRW.2017.156","DOI":"10.1109\/CVPRW.2017.156"},{"key":"15_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"694","DOI":"10.1007\/978-3-319-46475-6_43","volume-title":"Computer Vision \u2013 ECCV 2016","author":"J Johnson","year":"2016","unstructured":"Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694\u2013711. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46475-6_43"},{"key":"15_CR13","unstructured":"Kohl, S., et al.: Adversarial networks for the detection of aggressive prostate cancer. arXiv preprint arXiv:1702.08014 (2017)"},{"key":"15_CR14","unstructured":"Kr\u00e4henb\u00fchl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109\u2013117 (2011)"},{"key":"15_CR15","doi-asserted-by":"crossref","unstructured":"Lee, S., et al.: VPGNet: vanishing point guided network for lane and road marking detection and recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1965\u20131973. IEEE (2017)","DOI":"10.1109\/ICCV.2017.215"},{"key":"15_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"702","DOI":"10.1007\/978-3-319-46487-9_43","volume-title":"Computer Vision \u2013 ECCV 2016","author":"C Li","year":"2016","unstructured":"Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702\u2013716. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46487-9_43"},{"key":"15_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1007\/978-3-319-75238-9_11","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"Z Li","year":"2018","unstructured":"Li, Z., Wang, Y., Yu, J.: Brain tumor segmentation using an adversarial network. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 123\u2013132. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-75238-9_11"},{"key":"15_CR18","unstructured":"Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. In: NIPS Workshop on Adversarial Training, Barcelona, Spain, December 2016. https:\/\/hal.inria.fr\/hal-01398049"},{"key":"15_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1007\/978-3-319-67558-9_7","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"P Moeskops","year":"2017","unstructured":"Moeskops, P., Veta, M., Lafarge, M.W., Eppenhof, K.A.J., Pluim, J.P.W.: Adversarial training and dilated convolutions for brain MRI segmentation. In: Cardoso, M.J., et al. (eds.) DLMIA\/ML-CDS -2017. LNCS, vol. 10553, pp. 56\u201364. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-67558-9_7"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: Towards end-to-end lane detection: an instance segmentation approach. arXiv e-prints, February 2018","DOI":"10.1109\/IVS.2018.8500547"},{"key":"15_CR21","doi-asserted-by":"crossref","unstructured":"Nguyen, V., Vicente, T.F.Y., Zhao, M., Hoai, M., Samaras, D.: Shadow detection with conditional generative adversarial networks. In: ICCV: IEEE International Conference on Computer Vision, pp. 4520\u20134528. IEEE (2017)","DOI":"10.1109\/ICCV.2017.483"},{"issue":"2","key":"15_CR22","doi-asserted-by":"publisher","first-page":"384","DOI":"10.1109\/TMI.2017.2743464","volume":"37","author":"O Oktay","year":"2017","unstructured":"Oktay, O., et al.: Anatomically constrained neural networks (ACNN): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384\u2013395 (2017)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"15_CR23","doi-asserted-by":"crossref","unstructured":"Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: AAAI Conference on Artificial Intelligence, February 2018","DOI":"10.1609\/aaai.v32i1.12301"},{"key":"15_CR24","doi-asserted-by":"publisher","unstructured":"Sadanandan, S.K., Karlsson, J., Whlby, C.: Spheroid segmentation using multiscale deep adversarial networks. In: ICCVW: IEEE International Conference on Computer Vision Workshops, pp. 36\u201341, October 2017. https:\/\/doi.org\/10.1109\/ICCVW.2017.11","DOI":"10.1109\/ICCVW.2017.11"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: CVPR: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4491\u20134500 (2017)","DOI":"10.1109\/ICCV.2017.481"},{"key":"15_CR26","unstructured":"Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234\u20132242 (2016)"},{"key":"15_CR27","unstructured":"Schwing, A.G., Urtasun, R.: Fully connected deep structured networks. arXiv e-prints, March 2015"},{"key":"15_CR28","doi-asserted-by":"crossref","unstructured":"Xue, Y., Xu, T., Zhang, H., Long, R., Huang, X.: SegAN: adversarial network with multi-scale $$L\\_1$$ loss for medical image segmentation. arXiv e-prints, June 2017","DOI":"10.1007\/s12021-018-9377-x"},{"key":"15_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"507","DOI":"10.1007\/978-3-319-66179-7_58","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2017","author":"D Yang","year":"2017","unstructured":"Yang, D., et al.: Automatic liver segmentation using an adversarial image-to-image network. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 507\u2013515. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66179-7_58"},{"key":"15_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1007\/978-3-319-66179-7_47","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2017","author":"Y Zhang","year":"2017","unstructured":"Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408\u2013416. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66179-7_47"},{"key":"15_CR31","doi-asserted-by":"crossref","unstructured":"Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV: International Conference on Computer Vision, pp. 1529\u20131537 (2015)","DOI":"10.1109\/ICCV.2015.179"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2018 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-11009-3_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,22]],"date-time":"2023-01-22T01:07:01Z","timestamp":1674349621000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-11009-3_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030110086","9783030110093"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-11009-3_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"23 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2018.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}