{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T22:18:31Z","timestamp":1726006711009},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030109967"},{"type":"electronic","value":"9783030109974"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-10997-4_27","type":"book-chapter","created":{"date-parts":[[2019,1,17]],"date-time":"2019-01-17T12:30:23Z","timestamp":1547728223000},"page":"440-455","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Rough Set Theory as a Data Mining Technique: A Case Study in Epidemiology and Cancer Incidence Prediction"],"prefix":"10.1007","author":[{"given":"Zaineb","family":"Chelly Dagdia","sequence":"first","affiliation":[]},{"given":"Christine","family":"Zarges","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Schannes","sequence":"additional","affiliation":[]},{"given":"Martin","family":"Micalef","sequence":"additional","affiliation":[]},{"given":"Lino","family":"Galiana","sequence":"additional","affiliation":[]},{"given":"Beno\u00eet","family":"Rolland","sequence":"additional","affiliation":[]},{"given":"Olivier","family":"de Fresnoye","sequence":"additional","affiliation":[]},{"given":"Mehdi","family":"Benchoufi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,1,18]]},"reference":[{"issue":"1","key":"27_CR1","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.ins.2006.06.003","volume":"177","author":"Z Pawlak","year":"2007","unstructured":"Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3\u201327 (2007)","journal-title":"Inf. Sci."},{"key":"27_CR2","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1016\/j.jclinepi.2015.10.002","volume":"71","author":"F Bagherzadeh-Khiabani","year":"2016","unstructured":"Bagherzadeh-Khiabani, F., Ramezankhani, A., Azizi, F., Hadaegh, F., Steyerberg, E.W., Khalili, D.: A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results. J. Clin. Epidemiol. 71, 76\u201385 (2016)","journal-title":"J. Clin. Epidemiol."},{"issue":"3","key":"27_CR3","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1097\/EDE.0000000000000274","volume":"26","author":"SJ Mooney","year":"2015","unstructured":"Mooney, S.J., Westreich, D.J., El-Sayed, A.M.: Epidemiology in the era of big data. Epidemiology 26(3), 390 (2015)","journal-title":"Epidemiology"},{"key":"27_CR4","doi-asserted-by":"publisher","DOI":"10.1201\/b16343","volume-title":"Epidemiology: Study Design and Data Analysis","author":"M Woodward","year":"2013","unstructured":"Woodward, M.: Epidemiology: Study Design and Data Analysis. CRC Press, Boca Raton (2013)"},{"key":"27_CR5","doi-asserted-by":"crossref","unstructured":"Dagdia, Z.C., Zarges, C., Beck, G., Lebbah, M.: A distributed rough set theory based algorithm for an efficient big data pre-processing under the spark framework. In: Proceedings of the 2017 IEEE International Conference on Big Data, pp. 911\u2013916. IEEE, Boston (2017)","DOI":"10.1109\/BigData.2017.8258008"},{"issue":"1","key":"27_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.asoc.2008.05.006","volume":"9","author":"K Thangavel","year":"2009","unstructured":"Thangavel, K., Pethalakshmi, A.: Dimensionality reduction based on rough set theory: a review. Appl. Soft Comput. 9(1), 1\u201312 (2009)","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"27_CR7","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1055\/s-2005-916274","volume":"18","author":"F Amersi","year":"2005","unstructured":"Amersi, F., Agustin, M., Ko, C.Y.: Colorectal cancer: epidemiology, risk factors, and health services. Clin. Colon Rectal Surg. 18(3), 133 (2005)","journal-title":"Clin. Colon Rectal Surg."},{"issue":"1","key":"27_CR8","doi-asserted-by":"publisher","first-page":"60","DOI":"10.4103\/0972-6748.77642","volume":"19","author":"A Banerjee","year":"2010","unstructured":"Banerjee, A., Chaudhury, S.: Statistics without tears: populations and samples. Ind. Psychiatry J. 19(1), 60 (2010)","journal-title":"Ind. Psychiatry J."},{"key":"27_CR9","volume-title":"A Dictionary of Epidemiology","author":"M Porta","year":"2008","unstructured":"Porta, M.: A Dictionary of Epidemiology. Oxford University Press, Oxford (2008)"},{"key":"27_CR10","unstructured":"Dicker, R.C., Coronado, F., Koo, D., Parrish, R.G.: Principles of epidemiology in public health practice; an introduction to applied epidemiology and biostatistics. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) (2006)"},{"key":"27_CR11","unstructured":"Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: an ever evolving frontier in data mining. In: Feature Selection in Data Mining, pp. 4\u201313 (2013)"},{"key":"27_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10618-017-0498-x","volume":"31","author":"J Schneider","year":"2017","unstructured":"Schneider, J., Vlachos, M.: Scalable density-based clustering with quality guarantees using random projections. Data Min. Knowl. Discov. 31, 1\u201334 (2017)","journal-title":"Data Min. Knowl. Discov."},{"issue":"1","key":"27_CR13","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1145\/1629175.1629198","volume":"53","author":"J Dean","year":"2010","unstructured":"Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1), 72\u201377 (2010)","journal-title":"Commun. ACM"},{"key":"27_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10618-017-0500-7","volume":"31","author":"T Zhai","year":"2017","unstructured":"Zhai, T., Gao, Y., Wang, H., Cao, L.: Classification of high-dimensional evolving data streams via a resource-efficient online ensemble. Data Min. Knowl. Discov. 31, 1\u201324 (2017)","journal-title":"Data Min. Knowl. Discov."},{"issue":"6","key":"27_CR15","doi-asserted-by":"publisher","first-page":"1520","DOI":"10.1007\/s10618-016-0453-2","volume":"30","author":"NX Vinh","year":"2016","unstructured":"Vinh, N.X., et al.: Discovering outlying aspects in large datasets. Data Min. Knowl. Discov. 30(6), 1520\u20131555 (2016)","journal-title":"Data Min. Knowl. Discov."},{"issue":"2","key":"27_CR16","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1007\/s10618-016-0481-y","volume":"31","author":"J Zhang","year":"2017","unstructured":"Zhang, J., Wang, S., Chen, L., Gallinari, P.: Multiple Bayesian discriminant functions for high-dimensional massive data classification. Data Min. Knowl. Discov. 31(2), 465\u2013501 (2017)","journal-title":"Data Min. Knowl. Discov."},{"key":"27_CR17","volume-title":"Rough Sets: Theoretical Aspects of Reasoning About Data","author":"Z Pawlak","year":"2012","unstructured":"Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Springer, Heidelberg (2012)"},{"key":"27_CR18","doi-asserted-by":"crossref","unstructured":"Shanahan, J.G., Dai, L.: Large scale distributed data science using apache spark. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2323\u20132324. ACM (2015)","DOI":"10.1145\/2783258.2789993"},{"key":"27_CR19","volume-title":"Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems","author":"L Polkowski","year":"2012","unstructured":"Polkowski, L., Tsumoto, S., Lin, T.Y.: Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, vol. 56. Physica, Heidelberg (2012)"},{"key":"27_CR20","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4842-0964-6","volume-title":"Big Data Analytics with Spark: A Practitioner\u2019s Guide to Using Spark for Large Scale Data Analysis","author":"M Guller","year":"2015","unstructured":"Guller, M.: Big Data Analytics with Spark: A Practitioner\u2019s Guide to Using Spark for Large Scale Data Analysis. Springer, Heidelberg (2015)"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-10997-4_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,17]],"date-time":"2024-01-17T01:40:01Z","timestamp":1705455601000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-10997-4_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9783030109967","9783030109974"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-10997-4_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"18 January 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Dublin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Ireland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ecmlpkdd2018.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"535","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"131","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"17","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}