{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T21:33:01Z","timestamp":1726003981698},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030108274"},{"type":"electronic","value":"9783030108281"}],"license":[{"start":{"date-parts":[[2018,12,22]],"date-time":"2018-12-22T00:00:00Z","timestamp":1545436800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-10828-1_11","type":"book-chapter","created":{"date-parts":[[2018,12,21]],"date-time":"2018-12-21T11:48:05Z","timestamp":1545392885000},"page":"137-150","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Persistence-Based Approach to Automatic Detection of Line Segments in Images"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5328-5351","authenticated-orcid":false,"given":"Vitaliy","family":"Kurlin","sequence":"first","affiliation":[]},{"given":"Grzegorz","family":"Muszynski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,12,22]]},"reference":[{"key":"11_CR1","doi-asserted-by":"publisher","first-page":"898","DOI":"10.1109\/TPAMI.2010.161","volume":"33","author":"P Arbelaez","year":"2011","unstructured":"Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. Trans. PAMI 33, 898\u2013916 (2011)","journal-title":"Trans. PAMI"},{"key":"11_CR2","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/0031-3203(81)90009-1","volume":"13","author":"D Ballard","year":"1981","unstructured":"Ballard, D.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13, 111\u2013122 (1981)","journal-title":"Pattern Recogn."},{"key":"11_CR3","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1109\/TPAMI.1986.4767851","volume":"8","author":"J Canny","year":"1986","unstructured":"Canny, J.: A computational approach to edge detection. Trans. PAMI 8, 679\u2013698 (1986)","journal-title":"Trans. PAMI"},{"key":"11_CR4","first-page":"19","volume":"3","author":"A Chernov","year":"2013","unstructured":"Chernov, A., Kurlin, V.: Reconstructing persistent graph structures from noisy images. Image-A 3, 19\u201322 (2013)","journal-title":"Image-A"},{"key":"11_CR5","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1007\/s00454-006-1276-5","volume":"37","author":"D Cohen-Steiner","year":"2007","unstructured":"Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103\u2013130 (2007)","journal-title":"Discrete Comput. Geom."},{"key":"11_CR6","doi-asserted-by":"crossref","unstructured":"Duan, L., Lafarge, F.: Image partitioning into convex polygons. In: Proceedings of CVPR (Computer Vision and Pattern Recognition), pp. 3119\u20133127 (2015)","DOI":"10.1109\/CVPR.2015.7298931"},{"key":"11_CR7","volume-title":"Computational Topology: An Introduction","author":"H Edelsbrunner","year":"2010","unstructured":"Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence (2010)"},{"issue":"6","key":"11_CR8","doi-asserted-by":"publisher","first-page":"061609","DOI":"10.1117\/1.JEI.26.6.061609","volume":"26","author":"J Forsythe","year":"2017","unstructured":"Forsythe, J., Kurlin, V.: Convex constrained meshes for superpixel segmentations of images. J. Electron. Imaging 26(6), 061609 (2017)","journal-title":"J. Electron. Imaging"},{"key":"11_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/978-3-319-50835-1_21","volume-title":"Advances in Visual Computing","author":"J Forsythe","year":"2016","unstructured":"Forsythe, J., Kurlin, V., Fitzgibbon, A.: Resolution-independent superpixels based on convex constrained meshes without small angles. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 223\u2013233. Springer, Cham (2016). \nhttps:\/\/doi.org\/10.1007\/978-3-319-50835-1_21"},{"key":"11_CR10","series-title":"Briefs in Computer Science","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4939-0575-1","volume-title":"A Contrario Line Segment Detection","author":"R Grompone von Gioi","year":"2014","unstructured":"Grompone von Gioi, R.: A Contrario Line Segment Detection. Briefs in Computer Science. Springer, New York (2014). \nhttps:\/\/doi.org\/10.1007\/978-1-4939-0575-1"},{"key":"11_CR11","doi-asserted-by":"publisher","first-page":"35","DOI":"10.5201\/ipol.2012.gjmr-lsd","volume":"2","author":"R Grompone von Gioi","year":"2012","unstructured":"Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Line 2, 35\u201355 (2012)","journal-title":"Image Process. Line"},{"key":"11_CR12","doi-asserted-by":"publisher","first-page":"1098","DOI":"10.1109\/34.61710","volume":"12","author":"P Kahn","year":"1990","unstructured":"Kahn, P., Kitchen, L., Riseman, E.: A fast line finder for vision-guided robot navigation. Trans. PAMI 12, 1098\u20131102 (1990)","journal-title":"Trans. PAMI"},{"key":"11_CR13","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1016\/j.aam.2018.07.004","volume":"102","author":"S Kalisnik","year":"2019","unstructured":"Kalisnik, S., Kurlin, V., Lesnik, D.: A high-dimensional homologically persistent skeleton. Adv. Appl. Math. 102, 113\u2013142 (2019)","journal-title":"Adv. Appl. Math."},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"Kurlin, V.: Auto-completion of contours in sketches, maps and sparse 2D images based on topological persistence. In: Proceedings of SYNASC 2014 Workshop CTIC: Computational Topology in Image Context, pp. 594\u2013601. IEEE (2014)","DOI":"10.1109\/SYNASC.2014.85"},{"key":"11_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1007\/978-3-319-23192-1_51","volume-title":"Computer Analysis of Images and Patterns","author":"V Kurlin","year":"2015","unstructured":"Kurlin, V.: A homologically persistent skeleton is a fast and robust descriptor of interest points in 2d images. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 606\u2013617. Springer, Cham (2015). \nhttps:\/\/doi.org\/10.1007\/978-3-319-23192-1_51"},{"key":"11_CR16","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1111\/cgf.12713","volume":"34","author":"V Kurlin","year":"2015","unstructured":"Kurlin, V.: A one-dimensional homologically persistent skeleton of a point cloud in any metric space. Comput. Graph. Forum 34, 253\u2013262 (2015)","journal-title":"Comput. Graph. Forum"},{"key":"11_CR17","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1016\/j.patrec.2015.11.025","volume":"83","author":"V Kurlin","year":"2016","unstructured":"Kurlin, V.: A fast persistence-based segmentation of noisy 2d clouds with provable guarantees. Pattern Recogn. Lett. 83, 3\u201312 (2016)","journal-title":"Pattern Recogn. Lett."},{"key":"11_CR18","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611970265","volume-title":"Data Structures and Network Algorithms","author":"R Tarjan","year":"1983","unstructured":"Tarjan, R.: Data Structures and Network Algorithms. SIAM, Philadelphia (1983)"}],"container-title":["Lecture Notes in Computer Science","Computational Topology in Image Context"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-10828-1_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2018,12,21]],"date-time":"2018-12-21T11:52:01Z","timestamp":1545393121000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-10828-1_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12,22]]},"ISBN":["9783030108274","9783030108281"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-10828-1_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018,12,22]]},"assertion":[{"value":"CTIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Computational Topology in Image Context","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"M\u00e1laga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 January 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 January 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ctic2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ctic2019.uma.es\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"ConfTool","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"21","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"14","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"14","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"67% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"1.2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}