{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T21:19:58Z","timestamp":1726003198599},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030057152"},{"type":"electronic","value":"9783030057169"}],"license":[{"start":{"date-parts":[[2018,12,11]],"date-time":"2018-12-11T00:00:00Z","timestamp":1544486400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-030-05716-9_9","type":"book-chapter","created":{"date-parts":[[2018,12,10]],"date-time":"2018-12-10T14:17:32Z","timestamp":1544451452000},"page":"106-119","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Large Scale Audio-Visual Video Analytics Platform for Forensic Investigations of Terroristic Attacks"],"prefix":"10.1007","author":[{"given":"Alexander","family":"Schindler","sequence":"first","affiliation":[]},{"given":"Martin","family":"Boyer","sequence":"additional","affiliation":[]},{"given":"Andrew","family":"Lindley","sequence":"additional","affiliation":[]},{"given":"David","family":"Schreiber","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Philipp","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,12,11]]},"reference":[{"key":"9_CR1","doi-asserted-by":"crossref","unstructured":"Giannoulis, D., Benetos, E., Stowell, D., Rossignol, M., Lagrange, M., Plumbley, M.D.: Detection and classification of acoustic scenes and events: An IEEE AASP challenge. In: 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1\u20134. IEEE (2013)","DOI":"10.1109\/WASPAA.2013.6701819"},{"key":"9_CR2","unstructured":"Thomas, L., Schindler, A.: CQT-based convolutional neural networks for audio scene classification. In: Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE 2016), pp. 60\u201364, September 2016"},{"key":"9_CR3","unstructured":"Adavanne, S., Parascandolo, G., Pertil\u00e4, P., Heittola, T., Virtanen, T.: Sound event detection in multichannel audio using spatial and harmonic features. Technical report, DCASE2016 Challenge, September 2016"},{"key":"9_CR4","unstructured":"Kukanov, I., Hautam\u00e4ki, V., Lee, K.A.: Recurrent neural network and maximal figure of merit for acoustic event detection. Technical report, DCASE2017 Challenge (2017)"},{"key":"9_CR5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-49722-7","volume-title":"Music Similarity and Retrieval: An Introduction to Audio-and Web-based Strategies","author":"P Knees","year":"2016","unstructured":"Knees, P., Schedl, M.: Music Similarity and Retrieval: An Introduction to Audio-and Web-based Strategies, vol. 36. Springer, Heidelberg (2016). https:\/\/doi.org\/10.1007\/978-3-662-49722-7"},{"key":"9_CR6","unstructured":"Pampalk, E., Flexer, A., Widmer, G., et al.: In: Improvements of audio-based music similarity and genre classificaton. In: ISMIR, London, UK, vol. 5, pp. 634\u2013637 (2005)"},{"key":"9_CR7","doi-asserted-by":"crossref","unstructured":"Kim, J., Urbano, J., Liem, C., Hanjalic, A.: One deep music representation to rule them all?: A comparative analysis of different representation learning strategies. arXiv preprint arXiv:1802.04051 (2018)","DOI":"10.1007\/s00521-019-04076-1"},{"key":"9_CR8","doi-asserted-by":"crossref","unstructured":"Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R.: A taxonomy of deep convolutional neural netwprks for computer vision (2016)","DOI":"10.3389\/frobt.2015.00036"},{"key":"9_CR9","first-page":"1","volume":"2018","author":"A Voulodimos","year":"2018","unstructured":"Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1\u201313 (2018). Article ID 7068349","journal-title":"Comput. Intell. Neurosci."},{"issue":"4","key":"9_CR10","doi-asserted-by":"publisher","first-page":"630","DOI":"10.1109\/TII.2011.2167156","volume":"7","author":"LD Xu","year":"2011","unstructured":"Xu, L.D.: Enterprise systems: state-of-the-art and future trends. IEEE Trans. Ind. Inform. 7(4), 630\u2013640 (2011)","journal-title":"IEEE Trans. Ind. Inform."},{"key":"9_CR11","unstructured":"Brandt, J., Bux, M., Leser, U.: Cuneiform: a functional language for large scale scientific data analysis. In: EDBT\/ICDT Workshops (2015)"},{"key":"9_CR12","doi-asserted-by":"crossref","unstructured":"Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: Proceedings of International Conference on Management of Data (SIGMOD 2008), pp. 1099\u20131110. ACM (2008)","DOI":"10.1145\/1376616.1376726"},{"key":"9_CR13","unstructured":"Zaharia, M., Mosharaf Chowdhury, N.M., Franklin, M., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. Technical Report UCB\/EECS-2010-53, EECS Department, University of California, Berkeley, May 2010"},{"key":"9_CR14","doi-asserted-by":"crossref","unstructured":"Nadarajan, G., Chen-Burger, Y.-H., Malone, J.: Semantic-based workflow composition for video processing in the grid. In: 2006 IEEE\/WIC\/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings) (WI 2006), pp. 161\u2013165 (2006)","DOI":"10.1109\/WI.2006.156"},{"issue":"4","key":"9_CR15","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1109\/TSMC.2016.2531671","volume":"47","author":"CT Fan","year":"2017","unstructured":"Fan, C.T., Wang, Y.K., Huang, C.R.: Heterogeneous information fusion and visualization for a large-scale intelligent video surveillance system. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 593\u2013604 (2017)","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"9_CR16","doi-asserted-by":"crossref","unstructured":"Mesaros, A., Heittola, T., Virtanen, T.: Tut database for acoustic scene classification and sound event detection. In: 24th European Signal Processing Conference (EUSIPCO) (2016)","DOI":"10.1109\/EUSIPCO.2016.7760424"},{"key":"9_CR17","unstructured":"Schindler, A., Lidy, T., Rauber, A.: Comparing shallow versus deep neural network architectures for automatic music genre classification. In: 9th Forum Media Technology (FMT 2016), vol. 1734, pp. 17\u201321. CEUR (2016)"},{"key":"9_CR18","unstructured":"Schindler, A., Lidy, T., Rauber, A.: Multi-temporal resolution convolutional neural networks for acoustic scene classification. In: Detection and Classification of Acoustic Scenes and Events Workshop (DCASE 2017), Munich, Germany (2017)"},{"key":"9_CR19","doi-asserted-by":"crossref","unstructured":"Xu, Y., Kong, Q., Huang, Q., Wang, W., Plumbley, M.D.: Attention and localization based on a deep convolutional recurrent model for weakly supervised audio tagging. arXiv preprint arXiv:1703.06052 (2017)","DOI":"10.21437\/Interspeech.2017-486"},{"key":"9_CR20","unstructured":"Choi, K., Joo, D., Kim, J.: Kapre: On-GPU audio preprocessing layers for a quick implementation of deep neural network models with keras. In: Machine Learning for Music Discovery Workshop at 34th International Conference on Machine Learning. ICML (2017)"},{"key":"9_CR21","unstructured":"Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)"},{"key":"9_CR22","doi-asserted-by":"crossref","unstructured":"Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776\u2013780. IEEE (2017)","DOI":"10.1109\/ICASSP.2017.7952261"},{"key":"9_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1007\/978-3-319-48974-2_13","volume-title":"Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection","author":"A Schindler","year":"2016","unstructured":"Schindler, A., Gordea, S., van Biessum, H.: The europeana sounds music information retrieval pilot. In: Ioannides, M., et al. (eds.) EuroMed 2016. LNCS, vol. 10059, pp. 109\u2013117. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48974-2_13"},{"key":"9_CR24","unstructured":"Lidy, T., Rauber, A., Pertusa, A., Quereda, J.M.I.: Improving genre classification by combination of audio and symbolic descriptors using a transcription systems. In: Proceedings of International Conference on Music Information Retrieval (2007)"},{"key":"9_CR25","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017","DOI":"10.1109\/CVPR.2017.690"},{"key":"9_CR26","doi-asserted-by":"crossref","unstructured":"Ning, G., Zhang, Z., Huang, C., He, Z., Ren, X., Wang, H.: Spatially supervised recurrent convolutional neural networks for visual object tracking (2016)","DOI":"10.1109\/ISCAS.2017.8050867"},{"key":"9_CR27","doi-asserted-by":"crossref","unstructured":"Milan, A., Rezatofighi, S.H., Dick, A., Reid, I., Schindler, K.: Online multi-target tracking using recurrent neural netwroks (2016)","DOI":"10.1609\/aaai.v31i1.11194"},{"key":"9_CR28","doi-asserted-by":"crossref","unstructured":"Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with deep association metric (2017)","DOI":"10.1109\/ICIP.2017.8296962"},{"key":"9_CR29","unstructured":"Wojke, N., Bewley, A., Paulus, D.: Tracking the untrackable: learning to track multiple cues with long-term dependencies. In: CVPR (2017)"},{"key":"9_CR30","doi-asserted-by":"crossref","unstructured":"Boyer, M., Veigl, S.: A distributed system for secure, modular computer vision. In: Proceedings of Future Security 2014 9th Future Security Security Research Conference, Berlin, 16\u201318 September 2014, pp. 696\u2013699 (2014)","DOI":"10.1016\/S1353-4858(14)70094-7"},{"key":"9_CR31","doi-asserted-by":"crossref","unstructured":"Schmidt, R., Rella, M., Schlarb, S.: ToMaR\u2013a data generator for large volumes of content. In: 14th IEEE\/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 937\u2013942 (2014)","DOI":"10.1109\/CCGrid.2014.88"},{"key":"9_CR32","series-title":"Studien zur Inneren Sicherheit","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1007\/978-3-658-03203-6_2","volume-title":"Sicherheitsethik","author":"B Rampp","year":"2014","unstructured":"Rampp, B.: Zum Konzept der Sicherheit. In: Ammicht Quinn, R. (ed.) Sicherheitsethik. Studien zur Inneren Sicherheit, vol. 16, pp. 51\u201361. Springer VS, Wiesbaden (2014). https:\/\/doi.org\/10.1007\/978-3-658-03203-6_2"},{"key":"9_CR33","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-476-05333-6_1","volume-title":"Handbuch Technikethik","author":"A Grunwald","year":"2013","unstructured":"Grunwald, A.: Einleitung und \u00dcberblick. In: Grunwald, A., Simonidis-Puschmann, M. (eds.) Handbuch Technikethik, pp. 1\u201311. J.B. Metzler, Stuttgart (2013). https:\/\/doi.org\/10.1007\/978-3-476-05333-6_1"}],"container-title":["Lecture Notes in Computer Science","MultiMedia Modeling"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-05716-9_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,7]],"date-time":"2022-09-07T19:37:55Z","timestamp":1662579475000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-05716-9_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12,11]]},"ISBN":["9783030057152","9783030057169"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-05716-9_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018,12,11]]},"assertion":[{"value":"MMM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Multimedia Modeling","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Thessaloniki","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 January 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 January 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mmm2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/mmm2019.iti.gr\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double blind for full papers and workshop papers, single blind for other paper types","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"204","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"96","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"47% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2.67","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"6 demonstration papers, 5 industry papers, 6 workshop papers, and 6 Video Browser Showdown papers were also accepted.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}