{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T21:39:56Z","timestamp":1726004396273},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030050894"},{"type":"electronic","value":"9783030050900"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-05090-0_8","type":"book-chapter","created":{"date-parts":[[2018,12,28]],"date-time":"2018-12-28T08:24:32Z","timestamp":1545985472000},"page":"95-104","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["A Genetic Algorithm Based Technique for Outlier Detection with Fast Convergence"],"prefix":"10.1007","author":[{"given":"Xiaodong","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Ji","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zewen","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Hongzhou","family":"Li","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Youwen","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Jerry Chun-Wei","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Yongrui","family":"Qin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,12,29]]},"reference":[{"key":"8_CR1","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s00778-004-0125-5","volume":"14","author":"CC Aggarwal","year":"2005","unstructured":"Aggarwal, C.C., Yu, P.S.: An effective and efficient algorithm for high-dimensional outlier detection. VLDB J. 14, 211\u2013221 (2005)","journal-title":"VLDB J."},{"key":"8_CR2","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C.: On abnormality detection in spuriously populated data streams. In: SDM 2005, Newport Beach, CA (2005)","DOI":"10.1137\/1.9781611972757.8"},{"key":"8_CR3","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C., Yu, P.S.: Outlier detection in high dimensional data. In: SIGMOD 2001, Santa Barbara, California, USA, pp. 37\u201346 (2001)","DOI":"10.1145\/375663.375668"},{"key":"8_CR4","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB 2003, Berlin, Germany, pp. 81\u201392 (2003)","DOI":"10.1016\/B978-012722442-8\/50016-1"},{"key":"8_CR5","doi-asserted-by":"publisher","first-page":"852","DOI":"10.1016\/B978-012088469-8.50075-9","volume-title":"Proceedings 2004 VLDB Conference","author":"C AGGARWAL","year":"2004","unstructured":"Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: VLDB 2004, Toronto, Canada, pp. 852\u2013863 (2004)"},{"key":"8_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1007\/3-540-45681-3_2","volume-title":"Principles of Data Mining and Knowledge Discovery","author":"F Angiulli","year":"2002","unstructured":"Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15\u201327. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/3-540-45681-3_2"},{"key":"8_CR7","doi-asserted-by":"crossref","unstructured":"Breuning, M., Kriegel, H.-P., Ng, R., Sander, J.: LOF: identifying density-based local outliers. In: SIGMOD 2000, Dallas, Texas, pp. 93\u2013104 (2000)","DOI":"10.1145\/342009.335388"},{"key":"8_CR8","doi-asserted-by":"crossref","unstructured":"Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD 1984, Boston, Massachusetts, pp. 47\u201357 (1984)","DOI":"10.1145\/971697.602266"},{"key":"8_CR9","volume-title":"Data Mining: Concepts and Techniques","author":"J Han","year":"2000","unstructured":"Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman Publishers, Burlington (2000)"},{"key":"8_CR10","unstructured":"Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large dataset. In: VLDB 1998, New York, NY, pp. 392\u2013403 (1998)"},{"key":"8_CR11","unstructured":"Knorr, E.M., Ng, R.T.: Finding intentional knowledge of distance-based outliers. In: VLDB 1999, Edinburgh, Scotland, pp. 211\u2013222 (1999)"},{"issue":"4","key":"8_CR12","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1145\/959060.959074","volume":"32","author":"T Palpanas","year":"2003","unstructured":"Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Distributed deviation detection in sensor networks. SIGMOD Rec. 32(4), 77\u201382 (2003)","journal-title":"SIGMOD Rec."},{"issue":"2","key":"8_CR13","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1145\/335191.335437","volume":"29","author":"Sridhar Ramaswamy","year":"2000","unstructured":"Ramaswamy, S., Rastogi, R., Kyuseok, S.: Efficient algorithms for mining outliers from large data sets. In: SIGMOD 2000, Dallas Texas, pp. 427\u2013438 (2000)","journal-title":"ACM SIGMOD Record"},{"key":"8_CR14","unstructured":"Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: fast outlier detection using the local correlation integral. In: ICDE 2003, Bangalore, India, p. 315 (2003)"},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Pokrajac, D., Lazarevic, A., Latecki, L.: Incremental local outlier detection for data streams. In: CIDM 2007, Honolulu, Hawaii, USA, pp. 504\u2013515 (2007)","DOI":"10.1109\/CIDM.2007.368917"},{"key":"8_CR16","unstructured":"Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online outlier detection in sensor data using non-parametric models. In: VLDB 2006, Seoul, Korea, pp. 187\u2013198 (2006)"},{"key":"8_CR17","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"535","DOI":"10.1007\/3-540-47887-6_53","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"J Tang","year":"2002","unstructured":"Tang, J., Chen, Z., Fu, A.W., Cheung, D.W.: Enhancing effectiveness of outlier detections for low density patterns. In: Chen, M.S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 535\u2013548. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/3-540-47887-6_53"},{"key":"8_CR18","first-page":"1265","volume-title":"Proceedings 2004 VLDB Conference","author":"J ZHANG","year":"2004","unstructured":"Zhang, J., Lou, M., Ling, T.W., Wang, H.: HOS-miner: a system for detecting outlying subspaces of high-dimensional data. In: VLDB 2004, Toronto, Canada, pp. 1265\u20131268 (2004)"},{"key":"8_CR19","doi-asserted-by":"crossref","unstructured":"Zhang, J., Gao, Q., Wang, H.: A novel method for detecting outlying subspaces in high-dimensional databases using genetic algorithm. In: ICDM 2006, Hong Kong, China, pp. 731\u2013740 (2006)","DOI":"10.1109\/ICDM.2006.6"},{"key":"8_CR20","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1007\/s10115-006-0020-z","volume":"10","author":"J Zhang","year":"2006","unstructured":"Zhang, J., Wang, H.: Detecting outlying subspaces for high-dimensional data the new task, algorithms and performance. Knowl. Inf. Syst. (KAIS) 10, 333\u2013355 (2006)","journal-title":"Knowl. Inf. Syst. (KAIS)"},{"issue":"2","key":"8_CR21","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1145\/235968.233324","volume":"25","author":"Tian Zhang","year":"1996","unstructured":"Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD 1996, Montreal, Canada, pp. 103\u2013114 (1996)","journal-title":"ACM SIGMOD Record"},{"key":"8_CR22","unstructured":"Zhu, C., Kitagawa, H., Faloutsos, C.: Example-based robust outlier detection in high dimensional datasets. In: ICDM 2005, Houston, Texas, pp. 829\u2013832 (2005)"},{"key":"8_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1007\/978-3-642-03573-9_53","volume-title":"Database and Expert Systems Applications","author":"J Zhang","year":"2009","unstructured":"Zhang, J., Gao, Q., Wang, H., Liu, Q., Xu, K.: Detecting projected outliers in high-dimensional data streams. In: Bhowmick, S.S., K\u00fcng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 629\u2013644. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-03573-9_53"},{"issue":"4","key":"8_CR24","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1007\/s11280-013-0218-4","volume":"17","author":"J Zhang","year":"2014","unstructured":"Zhang, J., Tao, X., Wang, H.: Outlier detection from large distributed databases. World Wide Web J. (WWWJ) 17(4), 539\u2013568 (2014). https:\/\/doi.org\/10.1007\/s11280-013-0218-4","journal-title":"World Wide Web J. (WWWJ)"},{"key":"8_CR25","doi-asserted-by":"publisher","first-page":"25682","DOI":"10.1109\/ACCESS.2017.2771237","volume":"5","author":"X Zhu","year":"2017","unstructured":"Zhu, X., Zhang, J., Li, H., Fournier-Viger, P., Lin, J.C.-W., Chang, L.: FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection. IEEE Access 5, 25682\u201325695 (2017)","journal-title":"IEEE Access"}],"container-title":["Lecture Notes in Computer Science","Advanced Data Mining and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-05090-0_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T10:37:28Z","timestamp":1709807848000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-05090-0_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030050894","9783030050900"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-05090-0_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"29 December 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADMA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advanced Data Mining and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Nanjing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 November 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"adma2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/adma2018.nuaa.edu.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}