{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T12:05:35Z","timestamp":1742990735418,"version":"3.40.3"},"publisher-location":"Cham","reference-count":37,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030042110"},{"type":"electronic","value":"9783030042127"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-04212-7_28","type":"book-chapter","created":{"date-parts":[[2018,11,16]],"date-time":"2018-11-16T12:01:33Z","timestamp":1542369693000},"page":"326-335","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["The Fuzzy Misclassification Analysis with Deep Neural Network for Handling Class Noise Problem"],"prefix":"10.1007","author":[{"given":"Anupiya","family":"Nugaliyadde","sequence":"first","affiliation":[]},{"given":"Ratchakoon","family":"Pruengkarn","sequence":"additional","affiliation":[]},{"given":"Kok Wai","family":"Wong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,17]]},"reference":[{"issue":"7553","key":"28_CR1","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"key":"28_CR2","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"482","DOI":"10.1007\/978-3-319-70096-0_50","volume-title":"ICONIP 2017","author":"A Nugaliyadde","year":"2017","unstructured":"Nugaliyadde, A., Wong, K.W., Sohel, F., Xie, H.: Reinforced memory network for question answering. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 482\u2013490. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-70096-0_50"},{"key":"28_CR3","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778. IEEE Press (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"28_CR4","unstructured":"Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning, pp. 513\u2013520 (2011)"},{"key":"28_CR5","unstructured":"Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 2691\u20132699 (2015)"},{"issue":"5","key":"28_CR6","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1109\/TNNLS.2013.2292894","volume":"25","author":"B Frenay","year":"2014","unstructured":"Frenay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845\u2013869 (2014)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"28_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1007\/978-3-319-46672-9_19","volume-title":"Neural Information Processing","author":"R Pruengkarn","year":"2016","unstructured":"Pruengkarn, R., Wong, K.W., Fung, C.C.: Data cleaning using complementary fuzzy support vector machine technique. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016, Part II. LNCS, vol. 9948, pp. 160\u2013167. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46672-9_19"},{"key":"28_CR8","unstructured":"Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International Conference on Machine Learning, pp. 1737\u20131746 (2015)"},{"key":"28_CR9","doi-asserted-by":"crossref","unstructured":"Audhkhasi, K., Osoba, O., Kosko, B.: Noise benefits in backpropagation and deep bidirectional pre-training. In: International Joint Conference on Neural Networks, pp. 1\u20138. IEEE (2013)","DOI":"10.1109\/IJCNN.2013.6707022"},{"key":"28_CR10","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/978-3-319-51448-2_8","volume-title":"Artificial Intelligence in Label-free Microscopy","author":"A Mahjoubfar","year":"2017","unstructured":"Mahjoubfar, A., Chen, C.L., Jalali, B.: Deep learning and classification. Artificial Intelligence in Label-free Microscopy, pp. 73\u201385. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-51448-2_8"},{"issue":"3","key":"28_CR11","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1109\/TSMCA.2010.2084081","volume":"41","author":"TM Khoshgoftaar","year":"2011","unstructured":"Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A.: Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(3), 552\u2013568 (2011)","journal-title":"IEEE Trans. Syst. Man Cybern. Part A Syst. Hum."},{"issue":"3","key":"28_CR12","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1007\/s10489-010-0225-4","volume":"35","author":"D Guan","year":"2011","unstructured":"Guan, D., Yuan, W., Lee, Y.K., Lee, S.: Identifying mislabeled training data with the aid of unlabeled data. Appl. Intell. 35(3), 345\u2013358 (2011)","journal-title":"Appl. Intell."},{"key":"28_CR13","doi-asserted-by":"crossref","unstructured":"Zerhari, B., Lahcen, A.A., Mouline, S.: Detection and elimination of class noise in large datasets using partitioning filter technique. In: 4th IEEE International Colloquium on Information Science and Technology (CiSt), Tangier, pp. 194\u2013199 (2016)","DOI":"10.1109\/CIST.2016.7805041"},{"key":"28_CR14","doi-asserted-by":"crossref","unstructured":"Krawczyk, B., S\u00e1ez, J.A., Wo\u017aniak, M.: Tackling label noise with multi-class decomposition using fuzzy one-class support vector machines. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, pp. 915\u2013922 (2016)","DOI":"10.1109\/FUZZ-IEEE.2016.7737786"},{"issue":"C","key":"28_CR15","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1016\/j.inffus.2017.08.007","volume":"41","author":"W Yuan","year":"2018","unstructured":"Yuan, W., Guan, D., Ma, T., Khattak, A.M.: Classification with class noises through probabilistic sampling. Inf. Fusion 41(C), 57\u201367 (2018)","journal-title":"Inf. Fusion"},{"issue":"C","key":"28_CR16","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1016\/j.ins.2016.12.026","volume":"382","author":"J Zhang","year":"2017","unstructured":"Zhang, J., Sheng, V.S., Li, Q., Wu, J., Wu, X.: Consensus algorithms for biased labeling in crowdsourcing. Inf. Sci. 382(C), 254\u2013273 (2017)","journal-title":"Inf. Sci."},{"key":"28_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"317","DOI":"10.1007\/3-540-44938-8_32","volume-title":"Multiple Classifier Systems","author":"S Verbaeten","year":"2003","unstructured":"Verbaeten, S., Van Assche, A.: Ensemble methods for noise elimination in classification problems. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 317\u2013325. Springer, Heidelberg (2003). https:\/\/doi.org\/10.1007\/3-540-44938-8_32"},{"issue":"C","key":"28_CR18","first-page":"27","volume":"140","author":"J Luengo","year":"2017","unstructured":"Luengo, J., Shim, S.O., Alshomrani, S., Altalhi, A., Herrera, F.: CNC-NOS: class noise cleaning by ensemble filtering and noise scoring. Knowl. Based Syst. 140(C), 27\u201349 (2017)","journal-title":"Knowl. Based Syst."},{"issue":"3","key":"28_CR19","doi-asserted-by":"publisher","first-page":"297","DOI":"10.20965\/jaciii.2010.p0297","volume":"14","author":"P Jeatrakul","year":"2010","unstructured":"Jeatrakul, P., Wong, K.W., Fung, C.C.: Data cleaning for classification using misclassification analysis. J. Adv. Comput. Intell. Intell. Inform. 14(3), 297\u2013302 (2010)","journal-title":"J. Adv. Comput. Intell. Intell. Inform."},{"issue":"C","key":"28_CR20","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1016\/j.engappai.2016.09.001","volume":"65","author":"PC Pendharkar","year":"2017","unstructured":"Pendharkar, P.C.: Bayesian posterior misclassification error risk distributions for ensemble classifiers. Eng. Appl. Artif. Intell. 65(C), 484\u2013492 (2017)","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"C","key":"28_CR21","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1016\/j.patcog.2015.09.020","volume":"51","author":"R Ekambaram","year":"2016","unstructured":"Ekambaram, R., et al.: Active cleaning of label noise. Pattern Recogn. 51(C), 463\u2013480 (2016)","journal-title":"Pattern Recogn."},{"issue":"C","key":"28_CR22","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1016\/j.neucom.2014.10.084","volume":"160","author":"N Toma\u0161ev","year":"2015","unstructured":"Toma\u0161ev, N., Buza, K.: Hubness-aware kNN classification of high-dimensional data in presence of label noise. Neurocomputing 160(C), 157\u2013172 (2015)","journal-title":"Neurocomputing"},{"issue":"2","key":"28_CR23","first-page":"76","volume":"8","author":"GH Lee","year":"2006","unstructured":"Lee, G.H., Taur, J.S., Tao, C.W.: A robust fuzzy support vector machine for two-class pattern classification. Int. J. Fuzzy Syst. 8(2), 76\u201386 (2006)","journal-title":"Int. J. Fuzzy Syst."},{"key":"28_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1007\/978-3-319-26535-3_2","volume-title":"Neural Information Processing","author":"F\u00d6 \u00c7atak","year":"2015","unstructured":"\u00c7atak, F.\u00d6.: Robust ensemble classifier combination based on noise removal with one-class SVM. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015, Part II. LNCS, vol. 9490, pp. 10\u201317. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-26535-3_2"},{"issue":"C","key":"28_CR25","first-page":"2374","volume":"275","author":"M Sabzevari","year":"2017","unstructured":"Sabzevari, M., Mart\u00ednez-Mu\u00f1oz, G., Su\u00e1rez, A.: A two-stage ensemble method for the detection of class-label noise. Neurocomputing 275(C), 2374\u20132383 (2017)","journal-title":"Neurocomputing"},{"key":"28_CR26","unstructured":"Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping (2014). arXiv preprint: arXiv:1412.6596"},{"issue":"3","key":"28_CR27","doi-asserted-by":"publisher","first-page":"558","DOI":"10.1109\/TFUZZ.2010.2042721","volume":"18","author":"R Batuwita","year":"2010","unstructured":"Batuwita, R., Palade, V.: FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18(3), 558\u2013571 (2010)","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"28_CR28","unstructured":"Abe, S., Inoue, T.: Fuzzy support vector machines for multiclass problems. In: European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 113\u2013118 (2002)"},{"issue":"6","key":"28_CR29","doi-asserted-by":"publisher","first-page":"2094","DOI":"10.1109\/JSTARS.2014.2329330","volume":"7","author":"Y Chen","year":"2014","unstructured":"Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2094\u20132107 (2014)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"28_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/978-3-319-70139-4_6","volume-title":"Neural Information Processing","author":"S Boukoros","year":"2017","unstructured":"Boukoros, S., Nugaliyadde, A., Marnerides, A., Vassilakis, C., Koutsakis, P., Wong, K.W.: Modeling server workloads for campus email traffic using recurrent neural networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017, Part V. LNCS, vol. 10638, pp. 57\u201366. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-70139-4_6"},{"key":"28_CR31","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"28_CR32","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1007\/978-3-319-30671-1_4","volume-title":"Advances in Information Retrieval","author":"W Zhang","year":"2016","unstructured":"Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45\u201357. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-30671-1_4"},{"key":"28_CR33","unstructured":"Lichman, M.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2013)"},{"issue":"2\u20133","key":"28_CR34","first-page":"255","volume":"17","author":"J Alcal\u00e1-Fdez","year":"2011","unstructured":"Alcal\u00e1-Fdez, J., et al.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2\u20133), 255\u2013287 (2011)","journal-title":"J. Multiple-Valued Logic Soft Comput."},{"key":"28_CR35","doi-asserted-by":"crossref","unstructured":"Pruengkarn, R., Wong, K.W., Fung, C.C.: Imbalanced data classification using complementary fuzzy support vector machine techniques and SMOTE. In: IEEE International Conference on Systems, Man, and Cybernetics, Banff, Canada, pp. 978\u2013983 (2017)","DOI":"10.1109\/SMC.2017.8122737"},{"key":"28_CR36","unstructured":"Daza, L., Acuna, E.: An algorithm for detecting noise on supervised classification. In: The World Congress on Engineering and Computer Science 2007, San Francisco, USA, pp. 1\u20136 (2007)"},{"key":"28_CR37","doi-asserted-by":"crossref","unstructured":"Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction. In: 33rd International Conference on Software Engineering, Honolulu, HI, pp. 481\u2013490 (2011)","DOI":"10.1145\/1985793.1985859"}],"container-title":["Lecture Notes in Computer Science","Neural Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-04212-7_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T17:08:31Z","timestamp":1710263311000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-04212-7_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030042110","9783030042127"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-04212-7_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"17 November 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICONIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Neural Information Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Siem Reap","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cambodia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 December 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 December 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iconip2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conference.cs.cityu.edu.hk\/iconip\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"575","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"401","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"70% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}