{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T03:57:08Z","timestamp":1743134228189,"version":"3.40.3"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030033347"},{"type":"electronic","value":"9783030033354"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-03335-4_43","type":"book-chapter","created":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T12:14:02Z","timestamp":1541074442000},"page":"492-504","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["Built-Up Area Extraction from Landsat 8 Images Using Convolutional Neural Networks with Massive Automatically Selected Samples"],"prefix":"10.1007","author":[{"given":"Tao","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Hong","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,2]]},"reference":[{"key":"43_CR1","doi-asserted-by":"publisher","first-page":"2295","DOI":"10.1007\/s11430-016-5291-y","volume":"59","author":"XH Chen","year":"2016","unstructured":"Chen, X.H., Cao, X., Liao, A.P., et al.: Global mapping of artificial surface at 30-m resolution. Sci. China Earth Sci. 59, 2295\u20132306 (2016)","journal-title":"Sci. China Earth Sci."},{"issue":"3","key":"43_CR2","doi-asserted-by":"publisher","first-page":"583","DOI":"10.1080\/01431160304987","volume":"24","author":"Y Zha","year":"2003","unstructured":"Zha, Y., Gao, J., Ni, S.: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24(3), 583\u2013594 (2003)","journal-title":"Int. J. Remote Sens."},{"issue":"14","key":"43_CR3","doi-asserted-by":"publisher","first-page":"4269","DOI":"10.1080\/01431160802039957","volume":"29","author":"H Xu","year":"2008","unstructured":"Xu, H.: A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 29(14), 4269\u20134276 (2008)","journal-title":"Int. J. Remote Sens."},{"issue":"3","key":"43_CR4","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1109\/JSTARS.2008.2002869","volume":"1","author":"M Pesaresi","year":"2009","unstructured":"Pesaresi, M., Gerhardinger, A., Kayitakire, F.: A robust built-up area presence index by anisotropic rotation-invariant texture measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 1(3), 180\u2013192 (2009)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"issue":"5","key":"43_CR5","doi-asserted-by":"publisher","first-page":"1767","DOI":"10.1109\/JSTARS.2015.2425655","volume":"9","author":"D Chaudhuri","year":"2016","unstructured":"Chaudhuri, D., Kushwaha, N.K., Samal, A., et al.: Automatic building detection from high-resolution satellite images based on morphology and internal gray variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 9(5), 1767\u20131779 (2016)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"issue":"14","key":"43_CR6","doi-asserted-by":"publisher","first-page":"745309","DOI":"10.1155\/ASP.2005.2196","volume":"2005","author":"X Jin","year":"2005","unstructured":"Jin, X., Davis, C.H.: Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information. EURASIP J. Adv. Signal Process. 2005(14), 745309 (2005)","journal-title":"EURASIP J. Adv. Signal Process."},{"issue":"5","key":"43_CR7","doi-asserted-by":"publisher","first-page":"2102","DOI":"10.1109\/JSTARS.2013.2271445","volume":"6","author":"M Pesaresi","year":"2013","unstructured":"Pesaresi, M., Guo, H., Blaes, X., et al.: A global human settlement layer from optical HR\/VHR RS data: concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 6(5), 2102\u20132131 (2013)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"issue":"C","key":"43_CR8","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1016\/j.rse.2017.11.026","volume":"205","author":"R Goldblatt","year":"2018","unstructured":"Goldblatt, R., Stuhlmacher, M.F., Tellman, B., et al.: Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 205(C), 253\u2013275 (2018)","journal-title":"Remote Sens. Environ."},{"key":"43_CR9","doi-asserted-by":"crossref","unstructured":"Yang, J., Meng, Q., Huang, Q., et al.: A new method of building extraction from high resolution remote sensing images based on NSCT and PCNN. In: International Conference on Agro-Geoinformatics, pp. 1\u20135 (2016)","DOI":"10.1109\/Agro-Geoinformatics.2016.7577615"},{"issue":"6","key":"43_CR10","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"Alex Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, vol. 60, no. 2, pp. 1097\u20131105 (2012)","journal-title":"Communications of the ACM"},{"issue":"3","key":"43_CR11","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"Olga Russakovsky","year":"2015","unstructured":"Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015)","journal-title":"International Journal of Computer Vision"},{"key":"43_CR12","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"43_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, United States, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"2","key":"43_CR14","first-page":"627","volume":"28","author":"M Castelluccio","year":"2015","unstructured":"Castelluccio, M., Poggi, G., Sansone, C., et al.: Land use classification in remote sensing images by convolutional neural networks. Acta Ecol. Sin. 28(2), 627\u2013635 (2015)","journal-title":"Acta Ecol. Sin."},{"key":"43_CR15","doi-asserted-by":"crossref","unstructured":"Vakalopoulou, M., Karantzalos, K., Komodakis, N., et al.: Building detection in very high resolution multispectral data with deep learning features. In: Geoscience and Remote Sensing Symposium, vol. 50, pp. 1873\u20131876 (2015)","DOI":"10.1109\/IGARSS.2015.7326158"},{"key":"43_CR16","doi-asserted-by":"crossref","unstructured":"Huang, Z., Cheng, G., Wang, H., et al.: Building extraction from multi-source remote sensing images via deep deconvolution neural networks. In: Geoscience and Remote Sensing Symposium, pp. 1835\u20131838 (2016)","DOI":"10.1109\/IGARSS.2016.7729471"},{"key":"43_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1007\/978-3-319-27857-5_64","volume-title":"Advances in Visual Computing","author":"K Makantasis","year":"2015","unstructured":"Makantasis, K., Karantzalos, K., Doulamis, A., Loupos, K.: Deep learning-based man-made object detection from hyperspectral data. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 717\u2013727. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-27857-5_64"},{"key":"43_CR18","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","volume":"202","author":"N Gorelick","year":"2017","unstructured":"Gorelick, N., Hancher, M., Dixon, M., et al.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18\u201327 (2017)","journal-title":"Remote Sens. Environ."},{"issue":"12","key":"43_CR19","doi-asserted-by":"publisher","first-page":"17168","DOI":"10.3390\/rs71215863","volume":"7","author":"X Liu","year":"2015","unstructured":"Liu, X., Hu, G., Ai, B., et al.: A normalized urban areas composite index (NUACI) based on combination of DMSP-OLS and MODIS for mapping impervious surface area. Remote Sens. 7(12), 17168\u201317189 (2015)","journal-title":"Remote Sens."},{"issue":"2","key":"43_CR20","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/LGRS.2017.2785261","volume":"5","author":"N Yang","year":"2018","unstructured":"Yang, N., Tang, H., Sun, H., et al.: DropBand: a simple and effective method for promoting the scene classification accuracy of convolutional neural networks for VHR remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 5(2), 257\u2013261 (2018)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"43_CR21","doi-asserted-by":"publisher","unstructured":"Martino, P., Daniele, E., Stefano, F., et al.: Operating procedure for the production of the global human settlement layer from landsat data of the epochs 1975, 1990, 2000, and 2014. JRC Technical report EUR 27741 EN. https:\/\/doi.org\/10.2788\/253582","DOI":"10.2788\/253582"},{"key":"43_CR22","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1016\/j.rse.2018.02.055","volume":"209","author":"X Liu","year":"2018","unstructured":"Liu, X., Hu, G., Chen, Y., et al.: High-resolution multi-temporal mapping of global urban land using landsat images based on the Google earth engine platform. Remote Sens. Environ. 209, 227\u2013239 (2018)","journal-title":"Remote Sens. Environ."},{"key":"43_CR23","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1016\/j.isprsjprs.2014.09.002","volume":"103","author":"J Chen","year":"2015","unstructured":"Chen, J., Chen, J., Liao, A., et al.: Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J. Photogramm. Remote. Sens. 103, 7\u201327 (2015)","journal-title":"ISPRS J. Photogramm. Remote. Sens."},{"issue":"99","key":"43_CR24","first-page":"1","volume":"PP","author":"Z Li","year":"2018","unstructured":"Li, Z., Tang, J., Mei, T.: Deep collaborative embedding for social image understanding. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-03335-4_43","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T01:09:34Z","timestamp":1698800974000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-03335-4_43"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030033347","9783030033354"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-03335-4_43","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"2 November 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 November 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/prcv.qyhw.net.cn\/?lang=en&meeting_id=255","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}