{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T20:59:00Z","timestamp":1743022740577,"version":"3.40.3"},"publisher-location":"Cham","reference-count":22,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030033347"},{"type":"electronic","value":"9783030033354"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-03335-4_26","type":"book-chapter","created":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T12:14:02Z","timestamp":1541074442000},"page":"297-307","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["CAFN: The Combination of Atrous and Fractionally Strided Convolutional Neural Networks for Understanding the Densely Crowded Scenes"],"prefix":"10.1007","author":[{"given":"Lvyuan","family":"Fan","sequence":"first","affiliation":[]},{"given":"Minglei","family":"Tong","sequence":"additional","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,11,2]]},"reference":[{"key":"26_CR1","doi-asserted-by":"crossref","unstructured":"Ma, Z., Chan, A.B.: Crossing the line: crowd counting by integer programming with local features. In: 31st IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2539\u20132546. IEEE, Portland (2013)","DOI":"10.1109\/CVPR.2013.328"},{"issue":"1","key":"26_CR2","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TIP.2016.2624140","volume":"26","author":"Z Li","year":"2017","unstructured":"Li, Z., Tang, J.: Weakly supervised deep matrix factorization for social image understanding. IEEE Trans. Image Process. 26(1), 276\u2013288 (2017)","journal-title":"IEEE Trans. Image Process."},{"issue":"99","key":"26_CR3","first-page":"1","volume":"PP","author":"Z Li","year":"2018","unstructured":"Li, Z., Tang, J., Mei, T.: Deep collaborative embedding for social image understanding. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"26_CR4","unstructured":"Zhang, C., Li, H., Wang, X., et al.: Cross-scene crowd counting via deep convolutional neural networks. In: 33rd IEEE International Conference on Computer Vision and Pattern Recognition, pp. 833\u2013841. IEEE, Boston (2015)"},{"key":"26_CR5","doi-asserted-by":"crossref","unstructured":"Boominathan, L., Kruthiventi, S.S., Babu, R.V.: CrowdNet: a deep convolutional network for dense crowd counting. In: 24th Proceedings of the ACM on Multimedia Conference, pp. 640\u2013644. Springer, Amsterdam (2016)","DOI":"10.1145\/2964284.2967300"},{"key":"26_CR6","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: 34th IEEE International Conference on Computer Vision and Pattern Recognition, pp. 589\u2013597. IEEE, Las Vegas (2016)","DOI":"10.1109\/CVPR.2016.70"},{"key":"26_CR7","doi-asserted-by":"crossref","unstructured":"Sindagi, V.A., Patel, V.M.: CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 1\u20136. IEEE, Lecce (2017)","DOI":"10.1109\/AVSS.2017.8078491"},{"key":"26_CR8","doi-asserted-by":"crossref","unstructured":"Topkaya, I.S., Erdogan, H., Porikli, F.: Counting people by clustering person detector outputs. In: 11th IEEE International Conference on Advanced Video and Signal-Based Surveillance, pp. 313\u2013318. IEEE, Seoul (2014)","DOI":"10.1109\/AVSS.2014.6918687"},{"key":"26_CR9","doi-asserted-by":"crossref","unstructured":"Chen, K., Loy, C.C., Gong, S., Xiang, T.: Feature mining for localised crowd counting. In: 23rd British Machine Vision Conference, Guildford (2012)","DOI":"10.5244\/C.26.21"},{"key":"26_CR10","unstructured":"Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: 24th Neural Information Processing Systems, pp. 1324\u20131332, Curran Associates Inc., Vancouver (2010)"},{"key":"26_CR11","doi-asserted-by":"crossref","unstructured":"Pham, V., Kozakaya, T., Yamaguchi, O., Okada, R.: COUNT Forest: co-voting uncertain number of targets using random forest for crowd density estimation. In: 17th IEEE International Conference on Computer Vision (ICCV), pp. 3253\u20133261. IEEE, Santiago (2015)","DOI":"10.1109\/ICCV.2015.372"},{"key":"26_CR12","doi-asserted-by":"crossref","unstructured":"Xu, B., Qiu, G.: Crowd density estimation based on rich features and random projection forest. In: 21th IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, pp. 1\u20138 (2016)","DOI":"10.1109\/WACV.2016.7477682"},{"key":"26_CR13","doi-asserted-by":"crossref","unstructured":"Idrees, H., Saleemi, I., Seibert, C., Shah, M.: Multi-source multi-scale counting in extremely dense crowd images. In: 31st IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2547\u20132554. IEEE, Portland (2013)","DOI":"10.1109\/CVPR.2013.329"},{"key":"26_CR14","doi-asserted-by":"crossref","unstructured":"Wang, C., Zhang, H., Yang, L., et al.: Deep people counting in extremely dense crowds. In: 23rd International Conference ACM on Multimedia, pp. 1299\u20131302. ACM, Brisbane (2015)","DOI":"10.1145\/2733373.2806337"},{"key":"26_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"615","DOI":"10.1007\/978-3-319-46478-7_38","volume-title":"Computer Vision \u2013 ECCV 2016","author":"D O\u00f1oro-Rubio","year":"2016","unstructured":"O\u00f1oro-Rubio, D., L\u00f3pez-Sastre, R.J.: Towards perspective-free object counting with deep learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 615\u2013629. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46478-7_38"},{"key":"26_CR16","doi-asserted-by":"crossref","unstructured":"Shang, C., Ai, H., Bai, B.: End-to-end crowd counting via joint learning local and global count. In: 23rd IEEE International Conference on Image Processing (ICIP), pp. 1215\u20131219. IEEE, Phoenix (2016)","DOI":"10.1109\/ICIP.2016.7532551"},{"key":"26_CR17","doi-asserted-by":"crossref","unstructured":"Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional neural network for crowd counting. In: 35th IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 5744\u20135752 (2017)","DOI":"10.1109\/CVPR.2017.429"},{"key":"26_CR18","doi-asserted-by":"crossref","unstructured":"Sindagi, V.A., Patel, V.M.: Generating high-quality crowd density maps using contextual pyramid CNNs. In: 19th IEEE International Conference on Computer Vision (ICCV), pp. 1879\u20131888. IEEE, Venice (2017)","DOI":"10.1109\/ICCV.2017.206"},{"key":"26_CR19","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 6th International Conference on Learning Representations, San Diego (2015)"},{"key":"26_CR20","doi-asserted-by":"crossref","unstructured":"Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for understanding the highly congested scenes. In: 36th IEEE International Conference on Computer Vision and Pattern Recognition. IEEE, Utah (2018)","DOI":"10.1109\/CVPR.2018.00120"},{"key":"26_CR21","unstructured":"Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for machine learning. In: 26th Annual Conference on Neural Information Processing Systems (NIPS), Biglearn, Nips Workshop, Lake Tahoe (2012)"},{"key":"26_CR22","doi-asserted-by":"crossref","unstructured":"Marsden, M., Mcguinness, K., Little, S., et al.: Fully convolutional crowd counting on highly congested scene, pp. 27\u201333 (2016)","DOI":"10.5220\/0006097300270033"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-03335-4_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T01:06:46Z","timestamp":1698800806000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-03335-4_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030033347","9783030033354"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-03335-4_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"2 November 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 November 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/prcv.qyhw.net.cn\/?lang=en&meeting_id=255","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}