{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:20:44Z","timestamp":1725992444513},"publisher-location":"Cham","reference-count":40,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030016883"},{"type":"electronic","value":"9783030016890"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-01689-0_4","type":"book-chapter","created":{"date-parts":[[2018,9,22]],"date-time":"2018-09-22T11:22:22Z","timestamp":1537615342000},"page":"49-62","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Botnet Detection in Software Defined Networks by Deep Learning Techniques"],"prefix":"10.1007","author":[{"given":"Ivan","family":"Letteri","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2327-9393","authenticated-orcid":false,"given":"Giuseppe","family":"Della Penna","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9521-4711","authenticated-orcid":false,"given":"Giovanni","family":"De Gasperis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,23]]},"reference":[{"key":"4_CR1","unstructured":"Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https:\/\/www.tensorflow.org\/ , software available from tensorflow.org"},{"key":"4_CR2","doi-asserted-by":"publisher","unstructured":"Abu Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to understanding the botnet phenomenon. In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, pp. 41\u201352. IMC 2006. ACM, New York, NY, USA (2006). https:\/\/doi.org\/10.1145\/1177080.1177086","DOI":"10.1145\/1177080.1177086"},{"key":"4_CR3","unstructured":"Antonakakis, M., et al.: Understanding the mirai botnet. In: Proceedings of the 26th USENIX Conference on Security Symposium, SEC 2017, pp. 1093\u20131110. USENIX Association, Berkeley, CA, USA (2017)"},{"key":"4_CR4","doi-asserted-by":"publisher","unstructured":"Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet technology and defenses. In: Proceedings of the 2009 Cybersecurity Applications & Technology Conference for Homeland Security, CATCH 2009, pp. 299\u2013304. IEEE Computer Society, Washington, DC, USA (2009). https:\/\/doi.org\/10.1109\/CATCH.2009.40","DOI":"10.1109\/CATCH.2009.40"},{"key":"4_CR5","unstructured":"Bottou, L.: Stochastic gradient learning in neural networks. In: Proceedings of Neuro-N\u00eemes 91. EC2, Nimes, France (1991). http:\/\/leon.bottou.org\/papers\/bottou-91c"},{"key":"4_CR6","unstructured":"Chollet, F., et al.: Keras: the python deep learning library (2018). https:\/\/keras.io"},{"key":"4_CR7","doi-asserted-by":"publisher","unstructured":"D\u2019Angelo, G., Rampone, S., Palmieri, F.: An artificial intelligence-based trust model for pervasive computing. In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 701\u2013706 (2015). https:\/\/doi.org\/10.1109\/3PGCIC.2015.94","DOI":"10.1109\/3PGCIC.2015.94"},{"issue":"21","key":"4_CR8","doi-asserted-by":"publisher","first-page":"6297","DOI":"10.1007\/s00500-016-2183-1","volume":"21","author":"G D\u2019Angelo","year":"2017","unstructured":"D\u2019Angelo, G., Rampone, S., Palmieri, F.: Developing a trust model for pervasive computing based on Apriori association rules learning and Bayesian classification. Soft Comput. 21(21), 6297\u20136315 (2017). https:\/\/doi.org\/10.1007\/s00500-016-2183-1","journal-title":"Soft Comput."},{"key":"4_CR9","unstructured":"Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository: KDD cup 1999 data data set (2018). https:\/\/archive.ics.uci.edu\/ml\/datasets\/kdd+cup+1999+data"},{"key":"4_CR10","first-page":"2121","volume":"12","author":"J Duchi","year":"2011","unstructured":"Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121\u20132159 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR11","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1016\/j.cose.2014.05.011","volume":"45","author":"S Garca","year":"2014","unstructured":"Garca, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods. Comput. Secur. 45, 100\u2013123 (2014). https:\/\/doi.org\/10.1016\/j.cose.2014.05.011","journal-title":"Comput. Secur."},{"key":"4_CR12","unstructured":"Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315\u2013323 (2011)"},{"key":"4_CR13","unstructured":"Hinton, G.: RMSprop: divide the gradient by a running average of its recent magnitude (lecture 6e) (2018). http:\/\/www.cs.toronto.edu\/~tdijmen\/csc321\/slides\/lecture_slides_lec6.pdf"},{"issue":"4","key":"4_CR14","first-page":"3","volume":"2015","author":"D Jankowski","year":"2015","unstructured":"Jankowski, D., Amanowicz, M.: Intrusion detection in software defined networks with self-organized maps. J. Telecommun. Inf. Technol. 2015(4), 3\u20139 (2015)","journal-title":"J. Telecommun. Inf. Technol."},{"key":"4_CR15","first-page":"535","volume":"06","author":"P Kalaivani","year":"2016","unstructured":"Kalaivani, P., Vijaya, M.: Mining based detection of botnet traffic in network flow. IRACST-Int. J. Comput. Sci. Inf. Technol. Secur. 06, 535\u2013541 (2016)","journal-title":"IRACST-Int. J. Comput. Sci. Inf. Technol. Secur."},{"issue":"18","key":"4_CR16","doi-asserted-by":"publisher","first-page":"5803","DOI":"10.1002\/sec.1737","volume":"9","author":"B Kamal","year":"2016","unstructured":"Kamal, B., Abdeslam, E.F., Abdelbaki, E.E.: Software defined networking (SDN): a survey. Secur. Commun. Netw. 9(18), 5803\u20135833 (2016). https:\/\/doi.org\/10.1002\/sec.1737","journal-title":"Secur. Commun. Netw."},{"key":"4_CR17","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR (2014). http:\/\/arxiv.org\/abs\/1412.6980"},{"key":"4_CR18","first-page":"25","volume":"30","author":"S Kotsiantis","year":"2005","unstructured":"Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30, 25\u201336 (2005)","journal-title":"GESTS Int. Trans. Comput. Sci. Eng."},{"issue":"7553","key":"4_CR19","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)","journal-title":"Nature"},{"key":"4_CR20","unstructured":"Letteri, I., Del Rosso, M., Caianiello, P., Cassioli, D.: Performance of botnet detection by neural networks in software-defined networks. In: Proceedings of the Second Italian Conference on Cyber Security, Milan, Italy, 6th\u20139th February 2018. (2018). http:\/\/ceur-ws.org\/Vol-2058\/paper-03.pdf"},{"key":"4_CR21","unstructured":"Letteri, I., Della Penna, G.: Sources for botnet detection experiments on SDN networks through machine lerarning techinques (2018). https:\/\/github.com\/gdellapenna\/BotNet-SDN-ML"},{"key":"4_CR22","doi-asserted-by":"publisher","unstructured":"Miller, S., Busby-Earle, C.: The role of machine learning in botnet detection. In: 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST), December 2016. https:\/\/doi.org\/10.1109\/ICITST.2016.7856730","DOI":"10.1109\/ICITST.2016.7856730"},{"key":"4_CR23","unstructured":"Oliphant, T.: Numpy (2018). http:\/\/www.numpy.org"},{"key":"4_CR24","unstructured":"Open Networking Foundation: Openflow switch specification, version 1.3.0 (2012). https:\/\/www.opennetworking.org\/images\/stories\/downloads\/sdn-resources\/onf-specifications\/openflow\/openflow-spec-v1.3.0.pdf"},{"key":"4_CR25","first-page":"2825","volume":"12","author":"F Pedregosa","year":"2011","unstructured":"Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825\u20132830 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR26","unstructured":"Quittek, J., Zseby, T., Claise, B., Zander, S.: Requirements for IP flow information export (IPFIX) (2004). https:\/\/tools.ietf.org\/html\/rfc3917"},{"key":"4_CR27","unstructured":"Resende, P.A.A., Drummond, A.C.: The hogzilla dataset (2018). http:\/\/ids-hogzilla.org\/dataset"},{"key":"4_CR28","doi-asserted-by":"publisher","unstructured":"Seide, F., Agarwal, A.: CNTK: microsoft\u2019s open-source deep-learning toolkit. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 2135\u20132135. ACM, New York, NY, USA (2016). https:\/\/doi.org\/10.1145\/2939672.2945397","DOI":"10.1145\/2939672.2945397"},{"key":"4_CR29","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1016\/j.cose.2011.12.012","volume":"31","author":"A Shiravi","year":"2012","unstructured":"Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31, 357\u2013374 (2012). (report)","journal-title":"Comput. Secur."},{"key":"4_CR30","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929\u20131958 (2014). http:\/\/jmlr.org\/papers\/v15\/srivastava14a.html","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR31","doi-asserted-by":"publisher","unstructured":"Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), October 2016. https:\/\/doi.org\/10.1109\/WINCOM.2016.7777224","DOI":"10.1109\/WINCOM.2016.7777224"},{"key":"4_CR32","doi-asserted-by":"publisher","unstructured":"Tanwar, G.S., Goar, V.: Tools, techniques & analysis of botnet. In: Proceedings of the 2014 International Conference on Information and Communication Technology for Competitive Strategies, ICTCS 2014, pp. 92:1\u201392:5. ACM, New York, NY, USA (2014). https:\/\/doi.org\/10.1145\/2677855.2677947","DOI":"10.1145\/2677855.2677947"},{"key":"4_CR33","first-page":"1","volume":"11","author":"F Tariq","year":"2017","unstructured":"Tariq, F., Baig, S.: Machine learning based botnet detection in software defined networks. Int. J. Secur. Appl. 11, 1\u201312 (2017)","journal-title":"Int. J. Secur. Appl."},{"key":"4_CR34","unstructured":"Theano Development Team: Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints abs\/1605.02688 , May 2016. http:\/\/arxiv.org\/abs\/1605.02688"},{"key":"4_CR35","doi-asserted-by":"publisher","unstructured":"Van, N.T., Thinh, T.N., Sach, L.T.: An anomaly-based network intrusion detection system using deep learning. In: 2017 International Conference on System Science and Engineering (ICSSE), pp. 210\u2013214, July 2017. https:\/\/doi.org\/10.1109\/ICSSE.2017.8030867","DOI":"10.1109\/ICSSE.2017.8030867"},{"issue":"Dec","key":"4_CR36","first-page":"3371","volume":"11","author":"P Vincent","year":"2010","unstructured":"Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371\u20133408 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"4_CR37","doi-asserted-by":"publisher","unstructured":"Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712\u2013717, January 2017. https:\/\/doi.org\/10.1109\/ICOIN.2017.7899588","DOI":"10.1109\/ICOIN.2017.7899588"},{"key":"4_CR38","doi-asserted-by":"crossref","unstructured":"Wijesinghe, U., Tupakula, U., Varadharajan, V.: Botnet detection using software defined networking. In: 2015 22nd International Conference on Telecommunications (ICT), pp. 219\u2013224 (2015)","DOI":"10.1109\/ICT.2015.7124686"},{"key":"4_CR39","doi-asserted-by":"crossref","unstructured":"Winter, P., Hermann, E., Zeilinger, M.: Inductive intrusion detection in flow-based network data using one-class support vector machines. In: 2011 4th IFIP International Conference on New Technologies, Mobility and Security, February 2011","DOI":"10.1109\/NTMS.2011.5720582"},{"key":"4_CR40","unstructured":"Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs\/1212.5701 (2012). http:\/\/arxiv.org\/abs\/1212.5701"}],"container-title":["Lecture Notes in Computer Science","Cyberspace Safety and Security"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-01689-0_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,24]],"date-time":"2019-10-24T17:05:40Z","timestamp":1571936740000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-01689-0_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030016883","9783030016890"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-01689-0_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"CSS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Cyberspace Safety and Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Amalfi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 October 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 October 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"css2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/css2018.di.unisa.it\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}