{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:43:19Z","timestamp":1725993799998},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030014230"},{"type":"electronic","value":"9783030014247"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-01424-7_65","type":"book-chapter","created":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T21:07:37Z","timestamp":1538428057000},"page":"662-671","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Brain-Machine Interface for Mechanical Ventilation Using Respiratory-Related Evoked Potential"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3027-8241","authenticated-orcid":false,"given":"Sylvain","family":"Chevallier","sequence":"first","affiliation":[]},{"given":"Guillaume","family":"Bao","sequence":"additional","affiliation":[]},{"given":"Mayssa","family":"Hammami","sequence":"additional","affiliation":[]},{"given":"Fabienne","family":"Marlats","sequence":"additional","affiliation":[]},{"given":"Louis","family":"Mayaud","sequence":"additional","affiliation":[]},{"given":"Djillali","family":"Annane","sequence":"additional","affiliation":[]},{"given":"Fr\u00e9d\u00e9ric","family":"Lofaso","sequence":"additional","affiliation":[]},{"given":"Eric","family":"Azabou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,27]]},"reference":[{"issue":"4","key":"65_CR1","doi-asserted-by":"publisher","first-page":"920","DOI":"10.1109\/TBME.2011.2172210","volume":"59","author":"A Barachant","year":"2012","unstructured":"Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920\u2013928 (2012)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"5","key":"65_CR2","doi-asserted-by":"publisher","first-page":"772","DOI":"10.1007\/s00134-012-2493-4","volume":"38","author":"L Blanch","year":"2012","unstructured":"Blanch, L., et al.: Validation of the better care\u00ae system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensiv. Care Med. 38(5), 772\u2013780 (2012)","journal-title":"Intensiv. Care Med."},{"issue":"1","key":"65_CR3","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1109\/MSP.2008.4408441","volume":"25","author":"B Blankertz","year":"2008","unstructured":"Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41\u201356 (2008)","journal-title":"IEEE Signal Process. Mag."},{"key":"65_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1080\/2326263X.2017.1297192","volume":"4","author":"M Congedo","year":"2017","unstructured":"Congedo, M., Barachant, A., Bhatia, R.: Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 4, 1\u201320 (2017)","journal-title":"Brain-Comput. Interfaces"},{"key":"65_CR5","unstructured":"Congedo, M., Barachant, A., Andreev, A.: A new generation of brain-computer interface based on Riemannian geometry. arXiv preprint arXiv:1310.8115 (2013)"},{"issue":"3","key":"65_CR6","doi-asserted-by":"publisher","first-page":"246","DOI":"10.1097\/MCC.0000000000000307","volume":"22","author":"M Dres","year":"2016","unstructured":"Dres, M., Rittayamai, N., Brochard, L.: Monitoring patient-ventilator asynchrony. Curr. Opin. Crit. Care 22(3), 246\u2013253 (2016)","journal-title":"Curr. Opin. Crit. Care"},{"issue":"41","key":"65_CR7","doi-asserted-by":"publisher","first-page":"10673","DOI":"10.1523\/JNEUROSCI.2376-16.2016","volume":"36","author":"M Dubois","year":"2016","unstructured":"Dubois, M., et al.: Neurophysiological evidence for a cortical contribution to the wakefulness-related drive to breathe explaining hypocapnia-resistant ventilation in humans. J. Neurosci. 36(41), 10673\u201310682 (2016)","journal-title":"J. Neurosci."},{"issue":"5","key":"65_CR8","doi-asserted-by":"publisher","first-page":"1450","DOI":"10.1164\/ajrccm.161.5.9902018","volume":"161","author":"A Esteban","year":"2000","unstructured":"Esteban, A., et al.: How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am. J. Respir. Crit. Care Med. 161(5), 1450\u20131458 (2000)","journal-title":"Am. J. Respir. Crit. Care Med."},{"key":"65_CR9","doi-asserted-by":"crossref","unstructured":"Fatourechi, M., Ward, R.K., Mason, S.G., Huggins, J., Schl\u00f6gl, A., Birch, G.E.: Comparison of evaluation metrics in classification applications with imbalanced datasets. In: International Conference on Machine Learning and Applications (ICMLA), pp. 777\u2013782. IEEE (2008)","DOI":"10.1109\/ICMLA.2008.34"},{"issue":"4","key":"65_CR10","doi-asserted-by":"publisher","first-page":"2214","DOI":"10.1152\/jn.01058.2015","volume":"115","author":"AL Hudson","year":"2016","unstructured":"Hudson, A.L., et al.: Electroencephalographic detection of respiratory-related cortical activity in humans: from event-related approaches to continuous connectivity evaluation. J. Neurophysiol. 115(4), 2214\u20132223 (2016)","journal-title":"J. Neurophysiol."},{"key":"65_CR11","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1016\/j.neucom.2016.01.007","volume":"191","author":"EK Kalunga","year":"2016","unstructured":"Kalunga, E.K., Chevallier, S., Barth\u00e9lemy, Q., Djouani, K., Monacelli, E., Hamam, Y.: Online SSVEP-based BCI using riemannian geometry. Neurocomputing 191, 55\u201368 (2016)","journal-title":"Neurocomputing"},{"key":"65_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1007\/978-3-319-25040-3_64","volume-title":"Geometric Science of Information","author":"EK Kalunga","year":"2015","unstructured":"Kalunga, E.K., Chevallier, S., Barth\u00e9lemy, Q., Djouani, K., Hamam, Y., Monacelli, E.: From euclidean to riemannian means: information geometry for SSVEP classification. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 595\u2013604. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-25040-3_64"},{"issue":"2","key":"65_CR13","doi-asserted-by":"publisher","first-page":"516","DOI":"10.1152\/jappl.1999.87.2.516","volume":"87","author":"M Knafelc","year":"1999","unstructured":"Knafelc, M., Davenport, P.W.: Relationship between magnitude estimation of resistive loads, inspiratory pressures, and the rrep p1 peak. J. Appl. Physiol. 87(2), 516\u2013522 (1999)","journal-title":"J. Appl. Physiol."},{"issue":"3","key":"65_CR14","doi-asserted-by":"publisher","first-page":"031005","DOI":"10.1088\/1741-2552\/aab2f2","volume":"15","author":"F Lotte","year":"2018","unstructured":"Lotte, F., et al.: A review of classification algorithms for eeg-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). http:\/\/stacks.iop.org\/1741-2552\/15\/i=3\/a=031005","journal-title":"Journal of Neural Engineering"},{"issue":"4","key":"65_CR15","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1080\/2326263X.2016.1254403","volume":"3","author":"L Mayaud","year":"2016","unstructured":"Mayaud, L., et al.: Brain-computer interface for the communication of acute patients: a feasibility study and a randomized controlled trial comparing performance with healthy participants and a traditional assistive device. Brain-Comput. Interfaces 3(4), 197\u2013215 (2016)","journal-title":"Brain-Comput. Interfaces"},{"issue":"3","key":"65_CR16","doi-asserted-by":"publisher","first-page":"735","DOI":"10.1137\/S0895479803436937","volume":"26","author":"M Moakher","year":"2005","unstructured":"Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26(3), 735\u2013747 (2005)","journal-title":"SIAM J. Matrix Anal. Appl."},{"issue":"5","key":"65_CR17","doi-asserted-by":"publisher","first-page":"1138","DOI":"10.1109\/TBME.2016.2592820","volume":"64","author":"X Navarro-Sune","year":"2017","unstructured":"Navarro-Sune, X., et al.: Riemannian geometry applied to detection of respiratory states from EEG signals: the basis for a brain-ventilator interface. IEEE Trans. Biomed. Eng. 64(5), 1138\u20131148 (2017)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"10","key":"65_CR18","doi-asserted-by":"publisher","first-page":"1624","DOI":"10.1007\/s00134-012-2626-9","volume":"38","author":"L Piquilloud","year":"2012","unstructured":"Piquilloud, L., et al.: Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask. Intensiv. Care Med. 38(10), 1624\u20131631 (2012)","journal-title":"Intensiv. Care Med."},{"issue":"3","key":"65_CR19","first-page":"155","volume":"141","author":"B Reuter","year":"1989","unstructured":"Reuter, B., Linke, D., Kurthen, M.: Cognitive processes in unconscious patients? A brain mapping study of the p300 potential. Archiv fur Psychologie 141(3), 155\u2013173 (1989)","journal-title":"Archiv fur Psychologie"},{"issue":"8","key":"65_CR20","doi-asserted-by":"publisher","first-page":"2035","DOI":"10.1109\/TBME.2009.2012869","volume":"56","author":"B Rivet","year":"2009","unstructured":"Rivet, B., Souloumiac, A., Attina, V., Gibert, G.: xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans. Biomed. Eng. 56(8), 2035\u20132043 (2009)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"65_CR21","doi-asserted-by":"publisher","first-page":"746","DOI":"10.1097\/00003246-200204000-00004","volume":"30","author":"AJ Rotondi","year":"2002","unstructured":"Rotondi, A.J., et al.: Patients\u2019 recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Critical Care Med. 30(4), 746\u2013752 (2002)","journal-title":"Critical Care Med."},{"key":"65_CR22","doi-asserted-by":"crossref","unstructured":"Sch\u00e4fer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005)","DOI":"10.2202\/1544-6115.1175"},{"key":"65_CR23","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/4175.001.0001","volume-title":"Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond","author":"B Scholkopf","year":"2001","unstructured":"Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)"},{"issue":"6","key":"65_CR24","doi-asserted-by":"publisher","first-page":"767","DOI":"10.1016\/S1388-2457(02)00057-3","volume":"113","author":"J Wolpaw","year":"2002","unstructured":"Wolpaw, J., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767\u2013791 (2002)","journal-title":"Clin. Neurophysiol."},{"issue":"10","key":"65_CR25","doi-asserted-by":"publisher","first-page":"1753","DOI":"10.1109\/TNSRE.2016.2627016","volume":"25","author":"F Yger","year":"2017","unstructured":"Yger, F., Berar, M., Lotte, F.: Riemannian approaches in brain-computer interfaces: a review. IEEE Trans. Neural. Syst. Rehabil. Eng. 25(10), 1753\u20131762 (2017)","journal-title":"IEEE Trans. Neural. Syst. Rehabil. Eng."}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2018"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-01424-7_65","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T23:08:12Z","timestamp":1720652892000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-01424-7_65"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030014230","9783030014247"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-01424-7_65","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rhodes","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2018\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Open","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"360","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"139","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"28","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"In addition there are 41 full poster papers and 11 short poster papers included in the proceedings","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}