{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:28:57Z","timestamp":1725992937381},"publisher-location":"Cham","reference-count":17,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030014179"},{"type":"electronic","value":"9783030014186"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-01418-6_19","type":"book-chapter","created":{"date-parts":[[2018,9,26]],"date-time":"2018-09-26T14:57:36Z","timestamp":1537973856000},"page":"188-196","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Assessing Image Analysis Filters as Augmented Input to Convolutional Neural Networks for Image Classification"],"prefix":"10.1007","author":[{"given":"K.","family":"Delibasis","sequence":"first","affiliation":[]},{"given":"Ilias","family":"Maglogiannis","sequence":"additional","affiliation":[]},{"given":"S.","family":"Georgakopoulos","sequence":"additional","affiliation":[]},{"given":"K.","family":"Kottari","sequence":"additional","affiliation":[]},{"given":"V.","family":"Plagianakos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,27]]},"reference":[{"key":"19_CR1","unstructured":"Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. CoRR, abs\/1506.05163 (2015)"},{"issue":"2","key":"19_CR2","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Lowe","year":"2004","unstructured":"Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91\u2013110 (2004)","journal-title":"Int. J. Comput. Vis."},{"issue":"6","key":"19_CR3","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1016\/j.neucom.2017.08.071","volume":"280","author":"SV Georgakopoulos","year":"2018","unstructured":"Georgakopoulos, S.V., Kottari, K., Delibasis, K., Plagianakos, V.P., Maglogiannis, I.: Pose recognition using convolutional neural networks on omni-directional images. Neurocomputing 280(6), 23\u201331 (2018)","journal-title":"Neurocomputing"},{"key":"19_CR4","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"404","DOI":"10.1007\/978-3-319-65172-9_34","volume-title":"Engineering Applications of Neural Networks","author":"SV Georgakopoulos","year":"2017","unstructured":"Georgakopoulos, S.V., Kottari, K., Delibasis, K., Plagianakos, V.P., Maglogiannis, I.: Detection of malignant melanomas in dermoscopic images using convolutional neural network with transfer learning. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 404\u2013414. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-65172-9_34"},{"key":"19_CR5","unstructured":"https:\/\/imagej.net\/Trainable_Weka_Segmentation\\#Training_panel"},{"key":"19_CR6","unstructured":"Li, J., Allinson, N.M.: Dimensionality reduction-based building recognition. In: Proceedings of the Ninth IASTED International Conference on Visualization, Imaging and Image Processing, Cambridge UK, pp. 13\u201315, July 2009"},{"key":"19_CR7","unstructured":"https:\/\/www.sheffield.ac.uk\/eee\/research\/iel\/research"},{"issue":"43","key":"19_CR8","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/s11263-005-3848-x","volume":"65","author":"K Mikolajczyk","year":"2005","unstructured":"Mikolajczyk, K., et al.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(43), 43\u201372 (2005)","journal-title":"Int. J. Comput. Vis."},{"issue":"3","key":"19_CR9","first-page":"177","volume":"3","author":"T Tuytelaars","year":"2007","unstructured":"Tuytelaars, T., Mikolajczy, K.: Local invariant feature detectors: a survey. Comput. Graph. Vis. 3(3), 177\u2013280 (2007)","journal-title":"Comput. Graph. Vis."},{"issue":"7","key":"19_CR10","doi-asserted-by":"publisher","first-page":"1160","DOI":"10.1364\/JOSAA.2.001160","volume":"2","author":"JG Daugman","year":"1985","unstructured":"Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Opt. Soc. Am. J. Opt. Image Sci. 2(7), 1160\u20131169 (1985)","journal-title":"Opt. Soc. Am. J. Opt. Image Sci."},{"issue":"12","key":"19_CR11","doi-asserted-by":"publisher","first-page":"2005","DOI":"10.1016\/S0031-3203(96)00047-7","volume":"29","author":"TP Weldon","year":"1996","unstructured":"Weldon, T.P., Higgins, W.E., Dunn, D.F.: Efficient gabor filter design for texture segmentation. Pattern Recogn. 29(12), 2005\u20132015 (1996)","journal-title":"Pattern Recogn."},{"issue":"5","key":"19_CR12","doi-asserted-by":"publisher","first-page":"664","DOI":"10.1016\/j.patrec.2007.12.001","volume":"29","author":"M Li","year":"2008","unstructured":"Li, M., Staunton, R.C.: Optimum gabor filter design and local binary patterns for texture segmentation. Pattern Recogn. Lett. 29(5), 664\u2013672 (2008)","journal-title":"Pattern Recogn. Lett."},{"key":"19_CR13","doi-asserted-by":"crossref","unstructured":"Jia Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)","DOI":"10.1145\/2647868.2654889"},{"issue":"11","key":"19_CR14","doi-asserted-by":"publisher","first-page":"1958","DOI":"10.1109\/TPAMI.2008.128","volume":"30","author":"A Torralba","year":"2008","unstructured":"Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large dataset for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958\u20131970 (2008)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"19_CR15","doi-asserted-by":"publisher","first-page":"80","DOI":"10.2307\/3001968","volume":"1","author":"F Wilcoxon","year":"1945","unstructured":"Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80\u201383 (1945)","journal-title":"Biometr. Bull."},{"key":"19_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1007\/BFb0056195","volume-title":"Medical Image Computing and Computer-Assisted Interventation \u2014 MICCAI\u201998","author":"AF Frangi","year":"1998","unstructured":"Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130\u2013137. Springer, Heidelberg (1998). https:\/\/doi.org\/10.1007\/BFb0056195"},{"issue":"2","key":"19_CR17","doi-asserted-by":"publisher","first-page":"130","DOI":"10.1006\/cviu.2000.0866","volume":"80","author":"K Krissian","year":"2000","unstructured":"Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130\u2013171 (2000)","journal-title":"Comput. Vis. Image Underst."}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2018"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-01418-6_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,24]],"date-time":"2019-10-24T22:37:20Z","timestamp":1571956640000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-01418-6_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030014179","9783030014186"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-01418-6_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rhodes","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2018\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Open","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"easyacademia.org","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"360","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"139","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"28","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"39% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}},{"value":"In addition there are 41 full poster papers and 11 short poster papers included in the proceedings","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information"}}]}}