{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T19:48:50Z","timestamp":1725997730469},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030012977"},{"type":"electronic","value":"9783030012984"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-01298-4_13","type":"book-chapter","created":{"date-parts":[[2018,10,20]],"date-time":"2018-10-20T15:22:54Z","timestamp":1540048974000},"page":"134-141","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Pulmonary Nodule Segmentation Method of CT Images Based on 3D-FCN"],"prefix":"10.1007","author":[{"given":"Yan","family":"Nie","sequence":"first","affiliation":[]},{"given":"Deyun","family":"Zhuo","sequence":"additional","affiliation":[]},{"given":"Guanghui","family":"Song","sequence":"additional","affiliation":[]},{"given":"Shiting","family":"Wen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,10,21]]},"reference":[{"issue":"12","key":"13_CR1","doi-asserted-by":"publisher","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","volume":"39","author":"V Badrinarayanan","year":"2017","unstructured":"Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481\u20132495 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR2","doi-asserted-by":"crossref","unstructured":"Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV 2015, pp. 1520\u20131528. IEEE Computer Society, Washington, DC, USA (2015)","DOI":"10.1109\/ICCV.2015.178"},{"key":"13_CR3","unstructured":"Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. CoRR, arXiv:abs\/1511.07122 (2015)"},{"key":"13_CR4","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. CoRR, arXiv:abs\/1606.00915 (2016)"},{"key":"13_CR5","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFS. CoRR, arXiv:abs\/1412.7062 (2014)"},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. CoRR, arXiv:abs\/1509.02634 (2015)","DOI":"10.1109\/ICCV.2015.162"},{"key":"13_CR7","doi-asserted-by":"crossref","unstructured":"Zheng, S., et al.: Conditional random fields as recurrent neural networks. CoRR, arXiv:abs\/1502.03240 (2015)","DOI":"10.1109\/ICCV.2015.179"},{"key":"13_CR8","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1007\/978-3-319-46478-7_25","volume-title":"Computer Vision \u2013 ECCV 2016","author":"Siddhartha Chandra","year":"2016","unstructured":"Chandra, S., Kokkinos, I.: Fast, exact and multi-scale inference for semantic image segmentation with deep Gaussian CRFS. CoRR, arXiv:abs\/1603.08358 (2016)"},{"key":"13_CR9","unstructured":"Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. CoRR, arXiv:abs\/1611.08408 (2016)"},{"key":"13_CR10","unstructured":"Kozinski, M., Simon, L., Jurie, F.: An adversarial regularisation for semi-supervised training of structured output neural networks. CoRR, arXiv:abs\/1702.02382 (2017)"},{"key":"13_CR11","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR arXiv:abs\/1505.04597 (2015)","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"13_CR12","doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. CoRR, arXiv:abs\/1612.01105 (2016)","DOI":"10.1109\/CVPR.2017.660"},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.B.: Mask R-CNN. CoRR, arXiv:abs\/1703.06870 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"13_CR14","doi-asserted-by":"crossref","unstructured":"Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, arXiv:abs\/1311.2524 (2013)","DOI":"10.1109\/CVPR.2014.81"},{"key":"13_CR15","doi-asserted-by":"crossref","unstructured":"Girshick, R.B.: Fast R-CNN. CoRR, arXiv:abs\/1504.08083 (2015)","DOI":"10.1109\/ICCV.2015.169"},{"key":"13_CR16","unstructured":"Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR arXiv:abs\/1506.01497 (2015)"},{"key":"13_CR17","doi-asserted-by":"crossref","unstructured":"Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. CoRR, arXiv:abs\/1706.04303 (2017)","DOI":"10.1007\/978-3-319-66179-7_64"},{"issue":"1","key":"13_CR18","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","volume":"35","author":"S Ji","year":"2013","unstructured":"Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221\u2013231 (2013)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. CoRR, arXiv:abs\/1603.05959 (2016)","DOI":"10.1016\/j.media.2016.10.004"},{"key":"13_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"392","DOI":"10.1007\/978-3-319-75238-9_34","volume-title":"Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries","author":"A Jesson","year":"2018","unstructured":"Jesson, A., Arbel, T.: Brain tumor segmentation using a 3D FCN with multi-scale loss. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 392\u2013402. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-75238-9_34"},{"key":"13_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1007\/978-3-319-52280-7_10","volume-title":"Reconstruction, Segmentation, and Analysis of Medical Images","author":"L Yu","year":"2017","unstructured":"Yu, L., Yang, X., Qin, J., Heng, P.-A.: 3D FractalNet: dense volumetric segmentation for cardiovascular MRI volumes. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO\/HVSMR -2016. LNCS, vol. 10129, pp. 103\u2013110. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-52280-7_10"},{"key":"13_CR22","doi-asserted-by":"crossref","unstructured":"\u00c7i\u00e7ek, \u00d6., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. CoRR, arXiv:abs\/1606.06650 (2016)","DOI":"10.1007\/978-3-319-46723-8_49"},{"key":"13_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1007\/978-3-319-52280-7_11","volume-title":"Reconstruction, Segmentation, and Analysis of Medical Images","author":"J Li","year":"2017","unstructured":"Li, J., Zhang, R., Shi, L., Wang, D.: Automatic whole-heart segmentation in congenital heart disease using deeply-supervised 3D FCN. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO\/HVSMR -2016. LNCS, vol. 10129, pp. 111\u2013118. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-52280-7_11"}],"container-title":["Lecture Notes in Computer Science","Web and Big Data"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-01298-4_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,27]],"date-time":"2019-10-27T09:57:00Z","timestamp":1572170220000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-01298-4_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030012977","9783030012984"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-01298-4_13","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"APWeb-WAIM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Macau","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 July 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 July 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"apwebwaim2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/conferences.cis.umac.mo\/apwebwaim2018\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}