{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:38:10Z","timestamp":1732037890691},"publisher-location":"Cham","reference-count":39,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030012694"},{"type":"electronic","value":"9783030012700"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-01270-0_39","type":"book-chapter","created":{"date-parts":[[2018,10,5]],"date-time":"2018-10-05T22:07:51Z","timestamp":1538777271000},"page":"663-678","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":512,"title":["Deep Continuous Fusion for Multi-sensor 3D Object Detection"],"prefix":"10.1007","author":[{"given":"Ming","family":"Liang","sequence":"first","affiliation":[]},{"given":"Bin","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Shenlong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Raquel","family":"Urtasun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,10,6]]},"reference":[{"key":"39_CR1","unstructured":"Boscaini, D., Masci, J., Rodol\u00e0, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: NIPS (2016)"},{"key":"39_CR2","doi-asserted-by":"crossref","unstructured":"Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. (2017)","DOI":"10.1109\/MSP.2017.2693418"},{"key":"39_CR3","doi-asserted-by":"crossref","unstructured":"Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3d object detection for autonomous driving. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.236"},{"key":"39_CR4","unstructured":"Chen, X., et al.: 3d object proposals for accurate object class detection. In: NIPS (2015)"},{"key":"39_CR5","doi-asserted-by":"crossref","unstructured":"Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., Urtasun, R.: 3d object proposals using stereo imagery for accurate object class detection. TPAMI (2017)","DOI":"10.1109\/TPAMI.2017.2706685"},{"key":"39_CR6","doi-asserted-by":"crossref","unstructured":"Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for autonomous driving. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.691"},{"key":"39_CR7","unstructured":"Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS (2016)"},{"key":"39_CR8","doi-asserted-by":"crossref","unstructured":"Du, X., Ang Jr, M.H., Karaman, S., Rus, D.: A general pipeline for 3d detection of vehicles. arXiv preprint arXiv:1803.00387 (2018)","DOI":"10.1109\/ICRA.2018.8461232"},{"key":"39_CR9","doi-asserted-by":"crossref","unstructured":"Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep learning for robust RGB-D object recognition. In: IROS (2015)","DOI":"10.1109\/IROS.2015.7353446"},{"key":"39_CR10","doi-asserted-by":"crossref","unstructured":"Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., Posner, I.: Vote3deep: fast object detection in 3d point clouds using efficient convolutional neural networks. In: ICRA (2017)","DOI":"10.1109\/ICRA.2017.7989161"},{"key":"39_CR11","doi-asserted-by":"crossref","unstructured":"Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR (2012)","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"39_CR12","doi-asserted-by":"crossref","unstructured":"Girshick, R.: Fast R-CNN. In: ICCV (2015)","DOI":"10.1109\/ICCV.2015.169"},{"key":"39_CR13","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)","DOI":"10.1109\/CVPR.2014.81"},{"key":"39_CR14","unstructured":"Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)"},{"key":"39_CR15","doi-asserted-by":"crossref","unstructured":"Gupta, S., Girshick, R., Arbel\u00e1ez, P., Malik, J.: Learning rich features from RGB-D images for object detection and segmentation. In: ECCV (2014)","DOI":"10.1007\/978-3-319-10584-0_23"},{"key":"39_CR16","unstructured":"Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)"},{"key":"39_CR17","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)"},{"key":"39_CR18","doi-asserted-by":"crossref","unstructured":"Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3d proposal generation and object detection from view aggregation. arXiv preprint arXiv:1712.02294 (2017)","DOI":"10.1109\/IROS.2018.8594049"},{"key":"39_CR19","doi-asserted-by":"crossref","unstructured":"Li, B.: 3d fully convolutional network for vehicle detection in point cloud. In: IROS (2017)","DOI":"10.1109\/IROS.2017.8205955"},{"key":"39_CR20","unstructured":"Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional network. RSS (2016)"},{"key":"39_CR21","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.106"},{"key":"39_CR22","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. ICCV (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"39_CR23","doi-asserted-by":"crossref","unstructured":"Liu, W., et al.: Ssd: single shot multibox detector. In: ECCV (2016)","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"39_CR24","doi-asserted-by":"crossref","unstructured":"Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3d detection, tracking and motion forecasting with a single convolutional net. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00376"},{"key":"39_CR25","doi-asserted-by":"crossref","unstructured":"Monti, F., Boscaini, D., Masci, J., Rodol\u00e0, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model CNNs. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.576"},{"key":"39_CR26","doi-asserted-by":"crossref","unstructured":"Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from RGB-D data. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00102"},{"key":"39_CR27","unstructured":"Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)"},{"key":"39_CR28","unstructured":"Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space (2017)"},{"key":"39_CR29","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"39_CR30","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: NIPS (2015)"},{"key":"39_CR31","doi-asserted-by":"crossref","unstructured":"Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. TNN (2009)","DOI":"10.1109\/TNN.2008.2005605"},{"key":"39_CR32","doi-asserted-by":"crossref","unstructured":"Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: ECCV (2012)","DOI":"10.1007\/978-3-642-33715-4_54"},{"key":"39_CR33","doi-asserted-by":"crossref","unstructured":"Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.11"},{"key":"39_CR34","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1007\/978-3-319-10599-4_41","volume-title":"Computer Vision \u2013 ECCV 2014","author":"Shuran Song","year":"2014","unstructured":"Song, S., Xiao, J.: Sliding shapes for 3d object detection in depth images. In: ECCV (2014)"},{"key":"39_CR35","doi-asserted-by":"crossref","unstructured":"Song, S., Xiao, J.: Deep sliding shapes for amodal 3d object detection in RGB-D images. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.94"},{"key":"39_CR36","doi-asserted-by":"crossref","unstructured":"Wang, S., Suo, S., Ma, W.C., Urtasun, R.: Deep parameteric convolutional neural networks. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00274"},{"key":"39_CR37","doi-asserted-by":"crossref","unstructured":"Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3d object detection from point clouds. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00798"},{"key":"39_CR38","doi-asserted-by":"crossref","unstructured":"Yu, S.L., Westfechtel, T., Hamada, R., Ohno, K., Tadokoro, S.: Vehicle detection and localization on bird\u2019s eye view elevation images using convolutional neural network. In: SSRR (2017)","DOI":"10.1109\/SSRR.2017.8088147"},{"key":"39_CR39","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3d object detection. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00472"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2018"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-01270-0_39","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,6]],"date-time":"2022-10-06T00:50:09Z","timestamp":1665017409000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-01270-0_39"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030012694","9783030012700"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-01270-0_39","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"6 October 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2018.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}