{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:51:01Z","timestamp":1725994261609},"publisher-location":"Cham","reference-count":46,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030012489"},{"type":"electronic","value":"9783030012496"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-030-01249-6_48","type":"book-chapter","created":{"date-parts":[[2018,10,5]],"date-time":"2018-10-05T15:35:46Z","timestamp":1538753746000},"page":"800-816","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":34,"title":["Deep Autoencoder for Combined Human Pose Estimation and Body Model Upscaling"],"prefix":"10.1007","author":[{"given":"Matthew","family":"Trumble","sequence":"first","affiliation":[]},{"given":"Andrew","family":"Gilbert","sequence":"additional","affiliation":[]},{"given":"Adrian","family":"Hilton","sequence":"additional","affiliation":[]},{"given":"John","family":"Collomosse","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,10,6]]},"reference":[{"key":"48_CR1","unstructured":"Grauman, K., Shakhnarovich, G., Darrell, T.: A Bayesian approach to image-based visual hull reconstruction. In: Proceedings of the CVPR (2003)"},{"key":"48_CR2","doi-asserted-by":"crossref","unstructured":"Fattal, R.: Image upsampling via imposed edge statistics. In: Proceedings of the ACM SIGGRAPH (2007)","DOI":"10.1145\/1275808.1276496"},{"key":"48_CR3","doi-asserted-by":"crossref","unstructured":"Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of the International Conference on Computer Vision (ICCV) (2009)","DOI":"10.1109\/ICCV.2009.5459271"},{"key":"48_CR4","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Zhang, Y., Yuille, A.L.: Single image super-resolution using deformable patches. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 2917\u20132924 (2014)","DOI":"10.1109\/CVPR.2014.373"},{"issue":"2","key":"48_CR5","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1109\/38.988747","volume":"22","author":"WT Freeman","year":"2002","unstructured":"Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56\u201365 (2002)","journal-title":"IEEE Comput. Graph. Appl."},{"key":"48_CR6","unstructured":"Aydin, V., Foroosh, H.: Volumetric super-resolution of multispectral data. arXiv:1705.05745v1 (2017)"},{"issue":"4","key":"48_CR7","doi-asserted-by":"publisher","first-page":"677","DOI":"10.1109\/TPAMI.2015.2441053","volume":"38","author":"U Schmidt","year":"2016","unstructured":"Schmidt, U., Jancsary, J., Nowozin, S., Roth, S., Rother, C.: Cascades of regression tree fields for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 677\u2013689 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"48_CR8","doi-asserted-by":"crossref","unstructured":"Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1096\u20131103 (2008)","DOI":"10.1145\/1390156.1390294"},{"key":"48_CR9","unstructured":"Hayat, K.: Super-resolution via deep learning. CoRR abs\/1706.09077 (2017)"},{"key":"48_CR10","unstructured":"Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 350\u2013358 (2012)"},{"key":"48_CR11","doi-asserted-by":"crossref","unstructured":"Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.S.: Deep networks for image super-resolution with sparse prior. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 370\u2013378 (2015)","DOI":"10.1109\/ICCV.2015.50"},{"issue":"2","key":"48_CR12","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","volume":"38","author":"C Dong","year":"2016","unstructured":"Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295\u2013307 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"48_CR13","doi-asserted-by":"crossref","unstructured":"Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR) (2016)","DOI":"10.1109\/CVPR.2016.207"},{"key":"48_CR14","unstructured":"Jain, V., Seung, H.: Natural image denoising with convolutional networks. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 769\u2013776 (2008)"},{"issue":"9","key":"48_CR15","doi-asserted-by":"publisher","first-page":"4135","DOI":"10.1364\/BOE.8.004135","volume":"8","author":"S Abrahamsson","year":"2017","unstructured":"Abrahamsson, S., Blom, H., Jans, D.: Multifocus structured illumination microscopy for fast volumetric super-resolution imaging. Biomed. Opt. Express 8(9), 4135\u20134140 (2017)","journal-title":"Biomed. Opt. Express"},{"key":"48_CR16","unstructured":"Brock, A., Lim, T., Ritchie, J.M., Weston, N.J.: Generative and discriminative voxel modeling with convolutional neural networks (2016)"},{"key":"48_CR17","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1023\/B:VISI.0000042934.15159.49","volume":"61","author":"P Felzenszwalb","year":"2003","unstructured":"Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object detection. Int. J. Comput. Vis. 61, 55\u201379 (2003)","journal-title":"Int. J. Comput. Vis."},{"key":"48_CR18","doi-asserted-by":"crossref","unstructured":"Andriluka, M., Roth, S., Schiele, B.: Pictoral structures revisited: people detection and articulated pose estimation. In: Proceedings of the Computer Vision and Pattern Recognition (2009)","DOI":"10.1109\/CVPR.2009.5206754"},{"key":"48_CR19","unstructured":"Lan, X., Huttenlocher, D.: Beyond trees: common-factor model for 2D human pose recovery. In: Proceedings of the International Conference on Computer Vision, vol. 1, pp. 470\u2013477 (2005)"},{"key":"48_CR20","doi-asserted-by":"crossref","unstructured":"Jiang, H.: Human pose estimation using consistent max-covering. In: International Conference on Computer Vision (2009)","DOI":"10.1109\/ICCV.2009.5459307"},{"key":"48_CR21","first-page":"17","volume":"34","author":"P Huang","year":"2015","unstructured":"Huang, P., Tejera, M., Collomosse, J., Hilton, A.: Hybrid skeletal-surface motion graphs for character animation from 4D performance capture. ACM Trans. Graph. (ToG) 34, 17 (2015)","journal-title":"ACM Trans. Graph. (ToG)"},{"issue":"6","key":"48_CR22","doi-asserted-by":"publisher","first-page":"248","DOI":"10.1145\/2816795.2818013","volume":"34","author":"M Loper","year":"2015","unstructured":"Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (ToG) 34(6), 248 (2015)","journal-title":"ACM Trans. Graph. (ToG)"},{"issue":"2","key":"48_CR23","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1111\/cgf.13131","volume":"36","author":"T von Marcard","year":"2017","unstructured":"von Marcard, T., Rosenhahn, B., Black, M., Pons-Moll, G.: Sparse inertial poser: automatic 3D human pose estimation from sparse IMUs. Comput. Graph. Forum 36(2), 349\u2013360 (2017). Proceedings of the 38th Annual Conference of the European Association for Computer Graphics (Eurographics)","journal-title":"Comput. Graph. Forum"},{"key":"48_CR24","doi-asserted-by":"crossref","unstructured":"Malleson, C., Gilbert, A., Trumble, M., Collomosse, J., Hilton, A.: Real-time full-body motion capture from video and IMUs. In: 3DV (2017)","DOI":"10.1109\/3DV.2017.00058"},{"key":"48_CR25","doi-asserted-by":"crossref","unstructured":"Tan, J., Budvytis, I., Cipolla, R.: Indirect deep structured learning for 3D human body shape and pose prediction. In: BMVC (2017)","DOI":"10.5244\/C.31.15"},{"key":"48_CR26","doi-asserted-by":"crossref","unstructured":"Toshev, A., Szegedy, C.: Deep pose: human pose estimation via deep neural networks. In: Proceedings of the CVPR (2014)","DOI":"10.1109\/CVPR.2014.214"},{"key":"48_CR27","doi-asserted-by":"crossref","unstructured":"Park, D., Ramanan, D.: Articulated pose estimation with tiny synthetic videos. In: Proceedings of the CHA-LEARN Workshop on Looking at People (2015)","DOI":"10.1109\/CVPRW.2015.7301337"},{"key":"48_CR28","doi-asserted-by":"crossref","unstructured":"Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: ECCV 2016 (2016)","DOI":"10.1109\/CVPR.2017.143"},{"key":"48_CR29","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"566","DOI":"10.1007\/978-3-319-46484-8_34","volume-title":"Computer Vision \u2013 ECCV 2016","author":"M Sanzari","year":"2016","unstructured":"Sanzari, M., Ntouskos, V., Pirri, F.: Bayesian image based 3D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 566\u2013582. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_34"},{"key":"48_CR30","doi-asserted-by":"crossref","unstructured":"Zhou, X., Zhu, M., Leonardos, S., Derpanis, K.G., Daniilidis, K.: Sparseness meets deepness: 3D human pose estimation from monocular video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4966\u20134975 (2016)","DOI":"10.1109\/CVPR.2016.537"},{"key":"48_CR31","doi-asserted-by":"crossref","unstructured":"Trumble, M., Gilbert, A., Hilton, A., Collomosse, J.: Deep convolutional networks for marker-less human pose estimation from multiple views. In: Proceedings of the 13th European Conference on Visual Media Production (CVMP 2016) (2016)","DOI":"10.1145\/2998559.2998565"},{"key":"48_CR32","doi-asserted-by":"crossref","unstructured":"Trumble, M., Gilbert, A., Malleson, C., Hilton, A., Collomosse, J.: Total capture: 3D human pose estimation fusing video and inertial sensors. In: Proceedings of 28th British Machine Vision Conference, pp. 1\u201313 (2017)","DOI":"10.5244\/C.31.14"},{"key":"48_CR33","doi-asserted-by":"crossref","unstructured":"Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.139"},{"key":"48_CR34","doi-asserted-by":"crossref","unstructured":"Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., Fua, P.: Structured prediction of 3D human pose with deep neural networks. In: BMVC (2016)","DOI":"10.5244\/C.30.130"},{"key":"48_CR35","unstructured":"Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)"},{"key":"48_CR36","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"48_CR37","doi-asserted-by":"crossref","unstructured":"Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)","DOI":"10.21437\/Interspeech.2014-80"},{"key":"48_CR38","doi-asserted-by":"crossref","unstructured":"Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625\u20132634 (2015)","DOI":"10.1109\/CVPR.2015.7298878"},{"key":"48_CR39","unstructured":"Luo, Y., et al.: LSTM pose machines. arXiv preprint arXiv:1712.06316 (2017)"},{"issue":"7","key":"48_CR40","doi-asserted-by":"publisher","first-page":"1325","DOI":"10.1109\/TPAMI.2013.248","volume":"36","author":"C Ionescu","year":"2014","unstructured":"Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325\u20131339 (2014)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"48_CR41","doi-asserted-by":"crossref","unstructured":"Malleson, C., Volino, M., Gilbert, A., Trumble, M., Collomosse, J., Hilton, A.: Real-time full-body motion capture from video and IMUs. In: 2017 Fifth International Conference on 3D Vision (3DV) (2017)","DOI":"10.1109\/3DV.2017.00058"},{"key":"48_CR42","doi-asserted-by":"crossref","unstructured":"Li, S., Zhang, W., Chan, A.B.: Maximum-margin structured learning with deep networks for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2848\u20132856 (2015)","DOI":"10.1109\/ICCV.2015.326"},{"key":"48_CR43","doi-asserted-by":"crossref","unstructured":"Tekin, B., M\u00e1rquez-Neila, P., Salzmann, M., Fua, P.: Fusing 2D uncertainty and 3D cues for monocular body pose estimation. arXiv preprint arXiv:1611.05708 (2016)","DOI":"10.1109\/ICCV.2017.425"},{"key":"48_CR44","doi-asserted-by":"crossref","unstructured":"Tome, D., Russell, C., Agapito, L.: Lifting from the deep: convolutional 3D pose estimation from a single image. arXiv preprint arXiv:1701.00295 (2017)","DOI":"10.1109\/CVPR.2017.603"},{"key":"48_CR45","doi-asserted-by":"crossref","unstructured":"Lin, M., Lin, L., Liang, X., Wang, K., Cheng, H.: Recurrent 3D pose sequence machines. In: CVPR (2017)","DOI":"10.1109\/CVPR.2017.588"},{"key":"48_CR46","doi-asserted-by":"crossref","unstructured":"Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: ICCV (2017)","DOI":"10.1109\/ICCV.2017.288"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2018"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-01249-6_48","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,5]],"date-time":"2022-10-05T01:00:41Z","timestamp":1664931641000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-01249-6_48"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783030012489","9783030012496"],"references-count":46,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-01249-6_48","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"6 October 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Munich","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2018.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}